Multi-label activity recognition in extended videos using objects' spatio-temporal boundaries

“ITI-CERTH participation in ActEV and AVS Tracks of TRECVID 2021”

Konstantinos Gkountakos, Damianos Galanopoulos, Despoina Touska, Konstantinos Ioannidis, Stefanos Vrochidis, Vasileios Mezaris, Ioannis Kompatsiaris

Presenter: Despoina Touska
Problem statement

- Activity recognition and localization in surveillance scenarios
 - Processes untrimmed surveillance videos
 - Indoor or outdoor environments
 - Human, vehicles or both
 - Recognizes activity assigning a label
 - Human related
 - Vehicle related
 - Interaction between humans
 - Human-object interaction
 - Localizes activity’s spatio-temporal area
 - Time boundaries (start, end)
 - Spatial location
Surveillance scenarios challenges

- Untrimmed videos’ nature
- Camera’s large field of view
- Multiple activities simultaneously
- Multiple objects involved within each activity
- Actors perform more than one activity
 - At the same time
 - At overlapping time intervals
- Varying lengths of activities
Proposed approach

- Three-step pipeline:
 - **Detect** objects from **RGB video** frames
 - Extract bounding boxes for every object-of-interest (person, vehicles)
 - Track the detections over the time
 - Output spatio-temporal proposals of the detected objects
 - **Post-processing** the spatio-temporal proposals
 - Generate **Extended Activity Bounding Box** (EABBox) for every object
 - Construct final spatio-temporal activities proposals
 - **Classify** activities proposals
 - 3D-CNN model (3D-Resnet)
 - Assign labels to each activity proposal
Pipeline demonstration

Object detection - Tracking

Post - processing

Activity classification

Person walks

Person talks on phone
Object detection - YOLOv4

- **State-of-the-art real-time** object detector
- **43.5% AP** for MS COCO at 65 FPS (real-time) on Tesla V100
- **Pre-trained** using MS COCO dataset
 - Include objects such as “person”, “car”, “truck”
- **Fine-tuning** using the VIRAT dataset
 - 20 epochs
 - **Vehicle** and **person** the target objects
- Detected objects are described by:
 - **Bounding box**
 - **Confidence score**
- **Object tracker** based on **Euclidean distance**

Post-processing

- Extended Activity Bounding Box (EABBox) creation
- The union of the separated bounding boxes of each object
- Benefits:
 - Minimisation of the cropping effects avoiding a stretched and deform illustration of the objects
 - Acquisition of useful background information which could be helpful for activity classification
Activity classification - 3D-Resnet

- **Sample size**: (16, 112, 112) (frames, width, height)
- **Number of layers**: 50
- **Loaded weights**: Kinetics-400 dataset
- **Fine-tune** using the VIRAT dataset
- **Total epochs**: 350
- **Multi-label classification**
- **Weighted binary cross-entropy loss**
- **35 target** activities

Soft - Non maximum suppression

- Refines the classified activities proposals
- Improved version of the NMS algorithm
- Decays the detection scores of all objects as a continuous function of their overlap with other neighboring objects
- No object is eliminated in contrast with NMS
- Same computational complexity with NMS
- Implementation simplicity
Submitted systems

- **M4D_2021-baseline:**
 - Fine-tuned YOLOv4
 - Tracking with Euclidean distance
 - Post-processing
 - 3D-Resnet

- **M4D_2021-M4D_2021_S1:**
 - Fine-tuned YOLOv4
 - Tracking with Euclidean distance
 - Post-processing
 - 3D-Resnet
 - **Soft-NMS**
Evaluation results

<table>
<thead>
<tr>
<th>System Name</th>
<th>*PARTIAL AUDC</th>
<th>MEAN-P MISS@0.15TFA</th>
<th>MEAN-W_P MISS@ 0.15RFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4D_2021-baseline</td>
<td>0.85484</td>
<td>0.79732</td>
<td>0.87719</td>
</tr>
<tr>
<td>M4D_2021-M4D_2021_S1</td>
<td>0.84658</td>
<td>0.79410</td>
<td>0.88521</td>
</tr>
</tbody>
</table>

*PARTIAL AUDC is the primary metric, the lower values the better results

- Slightly improvements in 2nd system
- Soft-NMS algorithm improves the results as it offers the possibility to eliminate duplicate activities which affect negatively the results
- Further improvement are observed for >0.2TFA
Experimental evaluation
Thank you

Despoina Touska
destousok@iti.gr

This work was partially supported by the European Commission under contracts H2020-786731 CONNEXIONS and H2020-833115 PREVISION