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Abstract

This report presents the overview of the runs related to Ad-hoc Video Search (AVS) and Activities
in Extended Video (ActEV) tasks on behalf of the ITI-CERTH team. Our participation in the AVS
task is based on a cross-modal deep network architecture utilizing several textual and visual features.
As part of the retrieval stage, a dual-softmax approach is utilized to revise the calculated text-video
similarities. For the ActEV task, we adapt our framework to fit the new dataset and overcome the
challenges of detecting and recognizing activities in a multi-label manner while experimenting with
two separate activity classifiers.

1 Introduction

In this work, the work carried out in the context of TRECVID 2022 by the ITI-CERTH1 team in
the area of video analysis, retrieval and understanding is presented. ITI-CERTH has participated
in TRECVID [1] for many years as it is one of the most popular video understanding challenges.
Especially, ITI-CERTH has participated in Search and Semantic Indexing (SIN) tasks under the
research network COST292 (TRECVID 2006-2008) and the MESH and K-SPACE (TRECVID 2007-
2008) EU-Funded research projects, correspondingly. From 2009 to 2015 [2, 3, 4, 5, 6, 7, 8] ITI-CERTH
team has participated as a stand-alone organization in a significant number of tasks including but not
limited to SIN, KIS, INS, and MED. In both 2016 [9] and 2017 [10], ITI-CERTH participated in the
AVS, MED, INS and SED tasks. In 2018 [11], ITI-CERTH participated in the AVS, INS and ActEV;
in 2019 [12], the participation was limited to the ActEV task. In 2020 [13] ITI-CERTH participated
in the AVS, DSDI and ActEV tasks. Lastly, in 2021 [14] ITI-CERTH participated in the AVS and
ActEV tasks. Considering the submissions mentioned above, we aim to evaluate improved algorithms
and systems. This year, ITI-CERTH participated again in AVS and ActEV tasks. The following
sections will present the employed algorithms and the evaluation of the runs during the AVS and
ActEV tasks, respectively.

2 Ad-hoc Video Search

The TRECVID 2022 [15] Ad-hoc Video Search (AVS) task aims to develop a system for retrieving a
ranked list of 1000 video shots for each ad-hoc textual query, ranked from the most relevant to the
least relevant shot for the query. Firstly, we utilize a new cross-modal network that combines different
textual and visual features and develops multiple joint latent feature spaces. Secondly, we examine
a dual-softmax operation for revising text-video similarities using this year’s queries or queries from
previous years.
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2.1 Approach

In our AVS 2022 participation, we utilize the T × V cross-modal network presented in [16] as our
baseline network. This network utilizes multiple textual and visual features along with multiple
textual encoders to eventually build multiple cross-modal joint latent feature spaces.

Our network consists of two key sub-networks, one for the textual and one for the visual stream.
The textual sub-network inputs a free-text query s and vectorizes it into textual features. These
features are used as input in a set of K textual encoders that encode the input sentence. Each of
these encoders can be either a trainable network or simply an identity function forwarding its input.
Similarly to the textual one, the visual sub-network inputs a video shot v consisting of a sequence
of keyframes and we use L trained DNNs to extract the initial frame representations. To obtain
video-shot level representations we follow the mean-pooling strategy. Subsequently, we create all the
possible textual encodings-visual feature pairs and a joint embedding space is created for each pair,
using to this end two fully connected layers. Thus, K × L different joint spaces are created. The
objective of our network is to learn a similarity function sim(s, v) that will consider every individual
similarity in each joint latent space utilizing multi-loss-based training.

The second aspect of our study is to study a query-video similarities revision approach based
on a dual softmax operation as presented in [16]. At the retrieval stage, and for a given query
s, we calculate the similarities with the videos from the evaluation dataset, resulting in a vector
y(s) = [sim(s, v1), sim(s, v2), . . . , sim(s, vD)]T , where D is the number of evaluation videos. To
revise these similarities, we utilize a set of background textual queries (queries that are individual
from the examined one) and calculate their similarities with the available videos within the dataset
resulting in a similarity matrix X ∈ RC×D, where C is the number of background queries. A matrix
Z(s) = concat(y(s);X) is constructed, and a dual softmax operation revises the similarities as follows:

Z∗(s) = Softmax(Z(s), dim = 0)⊙ Softmax(Z(s), dim = 1)

where ⊙ denotes the Hadamard product.

2.2 Submission

Our network is trained using a combination of four other large-scale video captioning datasets: MSR-
VTTT [17], TGIF [18], ActivityNet [19] and Vatex [20]. The V3C2 [21] dataset is utilized to evaluate
the networks’ performance. The evaluation measure we use is the mean extended inferred average
precision (MxinfAP). As initial textual features, we utilize four models: i) Bag-of-Words (bow), ii)
Word2Vec model [22] iii) Bert [23] and iv) Clip model [24]. Also, we utilize two textual encoders that
input the textual features and encode the text further; i) the textual sub-network (ATT) presented in
[25] and ii) a Clip encoder that simply feedforwards the corresponding features through an identity
layer. As video feature extractors, we use three trained networks: i) a ResNet-152 [26] network,
trained on the ImageNet-11k dataset, ii) a ResNeXt-101 network, pre-trained by weakly supervised
learning on web images followed and fine-tuned on ImageNet [27], and iii) the ViT-B/32 Clip model
[24].

Similarly to previous works [28] [25] where the combination of multiple models leads to improved
performance, we utilize different model configurations to train multiple models using three learning
rates and two optimizers (i.e., Adam and RMSprop).

This year we submitted two runs on the AVS 2022 main task and two additional runs for the AVS
progress subtask. Overall, we evaluate our methods on 50 different ad-hoc queries (30 from the main
task and 20 from the progress subtask). The submitted runs are briefly described below:

• ITI CERTH.22 run 1: The T × V model, using two textual encoders and three visual features.
Late fusion of six different trained models derived from six different model configurations. And
finally, query-video shot similarities revision through the dual softmax operation using all AVS
2022 queries as background queries.

• ITI CERTH.22 run 2: Similar to run 1, but as background queries, the AVS 2019, 2020, and
2021 queries are used.



2.3 Experimental Results

Table 1 summarizes the evaluation results of our runs for the main AVS task. The ITI CERTH.22
run 1 where the AVS 2022 queries were used as background queries at the similarity revision step
slightly outperforms the ITI CERTH.22 run 2 where we do not utilize this year’s queries and the
retrieval performance does not rely on a priori knowledge of all queries that are being evaluated. The
results indicate that the utilization of all query knowledge is beneficial for the system’s performance.
But on the other hand, having access to such knowledge is an assumption we made and is not always
applicable, especially regarding real-world applications. So, the ITI CERTH.22 run 2 results show
that knowing all evaluated queries with a small trade-off regarding the overall performance is not a
prerequisite.

Figure 1 illustrates the performance of all submitted runs at the AVS 2022 competition. Our runs
achieved 9th and 10th place across all submitted runs and 3rd place among all team participations.

Table 1: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs for the
fully-automatic AVS task.

Run id: Main
ITI CERTH.22 run 1 0.210
ITI CERTH.22 run 2 0.206

Figure 1: AVS 2022 ranking list of all submitted runs regarding the main task in MXinfAP terms.
Red bars indicate our submitted runs.

3 Activities in Extended Video

In activity recognition systems, multimedia resources taken from cameras in indoor and outdoor
environments are analyzed to identify the activity instances of the depicted objects. Due to its
practical relevance, the activity recognition field of research has received a great deal of attention
considering the numerous related applications, i.e. surveillance and traffic control systems. Activity
recognition in those systems often deals with plenty of challenges, such as the untrimmed nature of
the video resources, the multiple activities executed by the same object, and the interaction among
objects. The challenges mentioned above and the need for a real-time response make human processing
and analysis difficult. Thereby, automated methods are needed to accomplish the task of activity
recognition.



Towards this goal, the Activities in Extended Videos challenge (ActEV) encourages the research
of real-time activity detection methods in surveillance scenarios. In our work, we address the problem
of activity recognition through a three-step pipeline using: object detection, object tracking, and
activity classification. In terms of object detection, Yolov4 [29] identifies persons and vehicles in video
resources. Then, the DeepSort [30] tracking method is employed to track the detected objects, which
are then used as spatiotemporal activity proposals from the activity classifiers. Finally, two activity
classifiers are developed based on the 3D-ResNet [31] model; one is dedicated to Person-Related (PR)
activities, and the other to Vehicle-Related (VR) as well as Person-Vehicle-Related (PVR) activities.
The MEVA dataset [32] was used to train and validate the activity classifiers using the official Kitware
annotations1, aiming at the 20 activity classes depicted in Table 2.

3.1 Approach

The task of activity recognition and localization is applied to a set of videos V = {vi} in order to
identify the set of activities A = {ai} for all the Objects of Interest (OoI). An activity ai is described
by a type ti according to a set of predefined classes and a temporal location l = (tstart, tend) that
indicates the start and end of it within the video it occurs.

Table 2: Activity classes in ActEV challenge 2022.

Activity Classes
PR Classes VR & PVR Classes

person reads document person closes vehicle door
person enters scene through structure person enters vehicle
person exits scene through structure person exits vehicle

person stands up person opens vehicle door
person sits down vehicle starts

person talks to person vehicle stops
person picks up object vehicle turns left
person puts down object vehicle turns right
person opens facility door
person texts on phone

person interacts with laptop
person transfers object

Considering the challenges of detected activities in surveillance videos, this work focuses on effec-
tively detecting and tracking the OoI, persons and vehicles, and naming their activities. Unlike our
previous submissions [13, 14] in the activity detection task of the ActEV challenge, this year we have
introduced three major improvements: (1) we dismissed the step of spatio-temporal tubelets creation,
named Extended Activity Bounding Boxes (EABBoxes) [33] by keeping only the information of the
Bounding Boxes (BBoxes) for every object to exclude redundant information, (2) we utilize two activ-
ity classifiers instead of one by grouping the given activity classes into two groups to enhance learning,
and (3) we incorporate a deep learning model in the object tracking task by replacing the Euclidean
distance algorithm. In the following subsections, further details of the pipeline are provided.

3.1.1 Object Detection

The task of object detection is needed in order to extract frame-wisely objects, which are considered
performers of potential activities. Given its fast and accurate performance, YOLOv4 [29] is incorpo-
rated as an object detector in our pipeline. More specifically, YOLOv4 [29] is an advanced version of
YOLOv3 [34], combining faster operating speed along with greater accuracy, reaching 43.5% Average
Precision (AP) for the Microsoft COCO [35] dataset at a real-time speed of approximately 65 Frames
Per Second (FPS) on Tesla V100 GPU. For the experiments, we employed a pre-trained YOLOv4
[29] model that was trained on the Microsoft COCO [35] dataset to detect items included into two
categories: ”person” and vehicle (”car”, ”bus”, and ”truck”).

1https://gitlab.kitware.com/meva/meva-data-repo/-/tree/master/annotation/DIVA-phase-2/MEVA



3.1.2 Object Tracking

Given a set of object detections for every video frame, the task of object tracking is to link those
detections over time, yielding object trajectories. The Deep Simple Online Realtime Tracking (Deep-
SORT) [30] is used as a tracking algorithm, which assigns a unique ID to every object that tracks
within a video. DeepSORT [30] is an extension of Simple Online Realtime Tracking (SORT) [36] that
shows greater performance in terms of ID switches and occlusions. In order to track objects success-
fully, DeepSORT [30] uses appearance descriptors apart from extracting only velocity and motion cues
from the objects. To fill the potential temporal gaps within an object’s trajectory, the interpolation
algorithm was used to give the object’s coordinates for the missing frames. The output of this step is
a set of tracked objects O = {oi}, and every one of them is characterized by the bounding boxes for
all the video frames that it was tracked oi = {(xleft, ytop, width, height)t1 , ...}.

3.1.3 Activity Recognition

The final step of our pipeline is activity classification. In this context, the 3D-ResNet [31] is employed
to label the tracked objects. 3D-ResNet [31] involves a deep learning architecture and effectively
performs on spatiotemporal data due to its 3D convolutional layers. Its architecture consists of four
sequential bottleneck blocks, where each block includes three 3D-convolution layers (with variant
kernel sizes), batch normalization, and ReLU activation layers. More specifically, we initialized the
model of 3D-ResNet [31] using the Kinetics [37] dataset’s pre-trained weights and then fine-tuned it
in a multi-label manner using the MEVA dataset [32]. Regarding the input, the 3D-ResNet model
performs in a 16-length frame batch.

In order to ensure greater learning ability, two separate activity classifiers are used, trained in two
different sets of activity classes as depicted in Table 2. One set of classes is dedicated to PR activities
only, while the other involves VR classes as well as PVR classes. The PVR classes demonstrate the
interaction between people and vehicles, and provide spatial data for both the person and vehicle
involved in an activity. In most cases, the bounding boxes of persons overlap with the ones of vehicles,
and thereby we make the assumption that vehicles’ bounding boxes can capture, to a great extent,
the interaction with persons. Therefore, to exclude redundant information, we keep only the vehicles’
spatial information for the PVR classes and concatenate them with the VR ones.

3.1.4 Activities refinement

The activity classification step assigns scored labels to every batch (16) of frames of a detected object’s
trajectory. In most cases, objects perform more than one activity simultaneously or for different time
intervals during their trajectories. For this reason, some post-processing steps are needed in order
to generate more accurate activity proposals and reduce the number of false alarms. The first step
of the refinement algorithm is to threshold the scored activity labels. Thus, we set a high threshold
Thight and a low threshold Tlow. The Tlow sets a strict limit for the activity proposals, as those
with scores lower than this value are less possible to happen, which implies their exclusion. The
Thight also sets a lower limit for an activity type but gives a chance for lower-scored frame batches
(at most 3 sequential batches, namely 48 frames) to be included in a created activity proposal that
mostly consists of high-scored frame batches for a specific activity type. This serves the case that
the activity classifier can incorrectly give lower scores to activity instances due to misleading factors
such as occlusions, background noise, etc. Another refinement step is to add the NMS in order to
deduplicate the activity proposals.

Our last refinement rule is related to the semantic relation between the activity labels. As an
attempt to reduce the number of false positives, this rule sets four groups of activity labels that can
not characterize the same activity proposal. Alternatively, if an activity classifier assigns high scores
to labels belonging to the same group, only the highest-scored label will be kept. For example, in case
that there were assigned the labels ”vehicle starts” and ”vehicle stops” to the same activity proposal,
only the one with the highest score value will be kept as semantically it is impossible for a vehicle
to perform both activities simultaneously. In Table 3, there are mutually exclusive groups of activity
labels. Groups 1 and 2 refer to activities for VR and PVR classes, while groups 3 and 4 to PR classes.



Table 3: Mutually exclusive groups of activity labels.

Activity Labels Groups

Group 1
vehicle starts, vehicle stops, person closes vehicle door,

person opens vehicle door, person enters vehicle, person exits vehicle

Group 2
vehicle turns left, vehicle turns right, person closes vehicle door,

person opens vehicle door, person enters vehicle, person exits vehicle

Group 3
person stands up, person sits down, person enters scene through structure,

person exits scene through structure
Group 4 person picks up object, person puts down object, person reads document

3.2 Submissions

In this section, we present the two submitted systems, as depicted in Figure 2 and in Table 4:

• baseline: This system was deployed using YOLOv4 [29] for object detection and the DeepSORT
[30] algorithm for tracking. The MEVA dataset [32] was used to train and validate the two
activity classifiers, splitting the classes according to Table 2. The refinement was achieved by
adjusting the Thight for the final scores to 40% (Tlow=0%).

• M4DSYS 1: This system is an extension of the baseline system, due to the differences in refine-
ment steps. According to experiments, the values of Thight and Tlow are set to 65% and 10%
respectively. The NMS and the semantic rules of mutually exclusive groups of activity classes
were performed subsequently.

Table 4: The evaluation results for MEVA [32] validation set and ActEV challenge test set.

Validation Set Test Set
Baseline M4DSYS 1 Baseline M4DSYS 1

p miss@0.1rfa 0.9787 0.9513 0.9823 0.9603
nAUDC@0.2rfa 0.9802 0.9528 0.9819 0.9639
Correct Detections 3142 1233 - -
False Detections 198059 23269 - -
Missed Detections 2670 4579 - -
Number of Activities 201201 24502 144071 23572

3.3 Experimental Results

In this subsection, further discussion about the performance of the submitted systems is reported. In
Table 4, there are results for two different setups as described in the Submissions section - baseline
and M4DSYS 1 - for both validation and test sets. The results for validation sets came out from
evaluations that run locally and the ones for test sets gained from the public leaderboard2 of the
ActEV challenge. Both sets were evaluated using the ”SRL AD V1” scoring protocol. For the test
set, we could not fill the numbers for correct, false and missed detections, as this information is not
available to us.

According to Table 4, the results for the M4DSYS 1 setup are slightly better than those of the
baseline, which is due to the changes in the refinement steps that lead to the reduction in the number of
false detections. Consequently, there is also a reduction in the number of correct detections and a rise
in missed detections, which resulted from the exclusion of a high number of activities due to stricter
control. In spite of the reduction in correct detections, the values of p miss@0.1rfa and nAUDC@0.2rfa
metrics suggest better results were influenced by fewer false detections in the M4DSYS 1 system. One

2https://actev.nist.gov/SRL#tab leaderboard



Figure 2: CERTH-ITI systems’ reported performance in the context of the ActEV 2022 challenge.

reason for the high values in evaluation metrics for both system setups is that our method assigns
activity labels to the whole trajectory of a tracked object, while in the annotation set only parts of an
object trajectory are annotated. Taking as input the whole trajectory of an object, activity classifiers
are misled, yielding non-negligible scores even for part of the objects’ trajectory that should not be
labelled.

4 Conclusions

In this paper, the evaluation of ITI-CERTH during the TRECVID 2022 challenge [15] is reported.
ITI-CERTH this year participated by developing new techniques and algorithms in the context of AVS
and ActEV tasks. Regarding the AVS task, we used a cross-modal network for text-to-video retrieval
to combine textual and visual features and learn multiple joint feature spaces. Moreover, we utilize
background queries and a dual-softmax operation to revise query-video similarities. We showed that
using individual queries from the examined ones leads to compatible results while serving real-case
scenarios. Regarding the ActEV task, a three-step pipeline was deployed in order to effectively detect
objects, track them and recognize their activities in a multi-label manner. The classification of the



detected activities is performed spatio-temporally using two separate classifiers; one for the person-
related activities and one for the vehicle-related and person-vehicle interaction activities. Though the
results are not expected, some aspects of the process seem promising.
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