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Abstract. The Waseda Meisei SoftBank team participated in the ad-hoc video

search (AVS), video-to-text (VTT), and activities in extended video (ActEV)

tasks at TRECVID 2022 [1]. For this year’s AVS task, we focused on sev-

eral visual-semantic embedding approaches and submitted only fully automatic

runs for both the main task and the progress subtask. Our best run for the

main task achieved a mean average precision (mAP) of 28.2%, which was the

highest accuracy among all submitted systems. This was the first time the

Waseda Meisei SoftBank team participated in the VTT task. Our approach was

to adopt SwinBERT, presented at CVPR2022, and implement it for fine-tuning

with V3C1. The five automatic evaluation metrics yielded results of 0.415, 0.182,

0.037, 0.286, and 0.100 for CIDER, CIDER-D, BLEU, METEOR, and SPICE,

respectively. The ActEV task was also our first. We proposed a system that

combines 3D ResNet training with YOLOX and ByteTrack trained models and

achieves a value of 0.9961 for Pmiss @ 0.1RFA, 0.1080 for NMD @ 0.1RFA,

0.9964 for nAUDC @ 0.2RFA for the primary activity and object detection

(AOD) task, and 0.9829 Pmiss @ 0.1RFA and 0.9850 nAUDC @ 0.2RFA for a

secondary activity detection (AD) task.

1 AVS Task

1.1 System Overview

Until last year, we had employed both concept-based and embedding methods; how-

ever, this year, we focused on embedding methods and submitted only the automatic

systems. We developed the systems by combining several embedding methods, such

as improved visual-semantic embeddings (VSE++) [2], a graph structured matching

network (GSMN) [3], contrastive language-image pre-training (CLIP) [4], and self-

supervision meets language-image pre-training (SLIP) [5]. Owing to the large video

size and the attempts to extract features from multiple models, not all planned calcu-

lations could be completed. However, the best mean average precision was achieved by

integrating only the results for which the calculations were completed.
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1.2 Embedding Models

In the following section, we describe the details of the embedding models used to

construct the system.

1. VSE++

We used the implementation of VSE++5 for training the models. To train the

visual-semantic embedding, four image-caption datasets, Flickr8k [6], Flickr30k [7],

MS-COCO [8], and Conceptual Captions [9], were used. The total number of im-

age captions was 3,428,009. We used a gated recurrent unit (GRU) for the feature

extraction from query sentences and the ResNet-50, ResNet-101, and ResNet-152

models for the feature extraction from images. Owing to the large number of train-

ing data, 500,000 training data pairs and 50,000 validation data pairs were ran-

domly selected for training the visual-semantic embedding models. We repeated

this data-selection process 32 times for each of the three types of ResNet model,

and then trained 96 embedding models.

2. GSMN

The visual features of the GSMN were extracted using the bottom-up attention

model6 and the pre-trained bottom-up attention model provided. The bottom-up

attention model is based on training Faster R-CNN with ResNet-101, using object

and attribute annotations from the Visual Genome [10]. The GRU was used to

extract the features from the text. To train the GSMN models, we used the GSMN

implementation7 and a total of 3,755,503 image-text pairs from Flickr8k, Flickr30k,

MS-COCO, Conceptual Captions, and MSR-VTT [11]. Because of the large number

of training data, we divided the training data and created nine models.

3. CLIP

We did not train the models ourselves, but used the pre-trained models provided

in the CLIP implementation8. We used eight types of pre-trained CLIP models:

RN50, RN101, RN50x4, RN50x16, RN50x64, ViT-B/32, ViT-B/16, and ViT-L/14.

4. SLIP
As with CLIP, we did not train the model on our own, but instead used publicly

available pre-trained models9. We used two types of pre-trained SLIP models, (ViT-

Small and ViT-Base), which were trained on YFCC15M. We also used ViT-Base

models trained on CC3M or CC12M.

5. Diffusion Model
We trained a diffusion model that generates an image embedding of CLIP condi-

tioned on a text embedding of the CLIP ViT-L/14 model. CC12M and a portion

of LAION400M were used for training.

1.3 Inference Procedure

Using the model described in Subsection 1.2, we calculated the scores for V3C2, the test

video dataset, based on whether it matched the query sentence. Because the image and

5 https://github.com/fartashf/vsepp
6 https://github.com/peteanderson80/bottom-up-attention
7 https://github.com/CrossmodalGroup/GSMN
8 https://github.com/openai/CLIP
9 https://github.com/facebookresearch/SLIP

https://github.com/fartashf/vsepp
https://github.com/peteanderson80/bottom-up-attention
https://github.com/CrossmodalGroup/GSMN
https://github.com/openai/CLIP
https://github.com/facebookresearch/SLIP
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sentence vectors can be computed for all models, we use the cosine similarity between

the frame images extracted from the videos and the query sentence to search for videos

that match the query sentence. Images were extracted from the video every 10 frames,

the similarity of the images to the query sentence was calculated, and the maximum

value was used as the score for that video. For the diffusion model, we generated 1,000

image embeddings for one query and calculated the similarity between the generated

images and the video frames. After calculating all scores for the test dataset, to obtain

the final score, a min-max normalization was conducted for each model, the maximum

value of which was 1.0, and the minimum value was 0.0. For each embedding method, all

scores from multiple models were added and normalized again such that the maximum

value for each method was 1.0 and the minimum value was 0.0. The final search result

was determined using the score computed using the weighted sum of each embedding

method.

1.4 Submissions and Results

Table 1. Our submitted runs for TRECVID 2022.

Run Fusion weights
mAP

priority VSE++ GSMN CLIP SLIP Diffusion

1 3 3 15 3 3 28.1

2 3 3 10 3 3 28.2

3 3 3 15 5 3 28.1

4 3 3 15 3 0 26.3

In this year’s fully automatic systems, the test data were ranked according to the

scores, which were calculated by simply adding the scores from the five different em-

bedding methods multiplied by the fusion weights. The fusion weights were manually

determined by evaluating the AVS tasks of 2019, 2020, and 2021 TRECVID. The ac-

curacies of the fusion weights are listed in Table 1. As the reason for the highest fusion

weights for the CLIP models, they had the highest precision and largest contribution

over VSE++ and GSMN on the benchmark from last year. SLIP, which we newly intro-

duced this year, is more accurate than CLIP; however, we set the integration weights

lower than CLIP because we did not finish all feature extraction calculations and were

unable to evaluate it sufficiently. In addition, the diffusion model introduced this year

was given a lower fusion weight, partly because we had not yet obtained sufficient val-

idation results, and only some of the models could be trained. However, the results of

this year’s benchmark show that priorities 1, 2, and 3, which introduced the diffusion

model, had a higher mean average precision and contributed more than priority 4,

which did not introduce the diffusion model. Because sufficient validation experiments

could not be conducted, a detailed analysis and validation will be conducted in the

future to confirm the effectiveness of this approach.

The results for all teams submitted to the main task are shown in Fig. 1. Among

all systems submitted by all participating teams, the four systems we submitted were

ranked within the top 1–4.



4

Fig. 1. Results of all fully automatic systems for all teams that submitted to the main task.

2 VTT Task

2.1 Introduction

Video-to-text (VTT) is a task to create a description in natural language after using the

visual context and the voice context given from a video sequence. Image captioning is a

task similar to VTT; however, VTT tasks require recognition in the temporal direction,

in addition to recognition in the spatial direction required for image captioning. In

addition, the input video has a variable length and contains numerous redundancies,

which must be addressed. In this study, we conducted a pretraining on the VATEX

dataset[12] based on SwinBERT10[13], which is the latest method for conducting a

VTT task, and applied a fine-tuning using the TRECVID-VTT dataset. The results

were 0.415 for CIDER, 0.182 for CIDER-D, 0.037 for BLEU, 0.286 for METEOR, and

0.100 for SPICE.

2.2 Methods

In this section, we explain our VTT method. We pretrained the state-of-the-art Swin-

BERT model on the video captioning task and on the VATEX dataset and fine-

tuned it on the TRECVID-VTT dataset. SwinBERT is a model comprising Video

SwinTransformer[14] for video feature extraction and Transformer [15] Encoder for the

decoder. Video SwinTransformer is an extension of SwinTransformer[16], which is an

image-recognition model used for video-recognition tasks. SwinTransformer is based on

the Transformer model proposed in natural language processing, and achieves a high

accuracy and speed by improving the efficiency of the shifted window based multihead

self-attention (SW-MSA) mechanism and its calculation method. SwinTransformer out-

puts feature maps that are compatible with the CNN architecture, and pre-trained

models are provided with a wide variety of model scales. It is therefore also called a

10 https://github.com/microsoft/SwinBERT

https://github.com/microsoft/SwinBERT
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standard model for image recognition and is used to replace a CNN. With SwinBERT,

video features are obtained using Video SwinTransformer, and captions are decoded

based on the video features in the Transformer Encoder. To deal with long and redun-

dant videos, SwinBERT avoids unnecessary calculations by creating a sparse attention

mask using Transformer Encoder. The attention mask is also acquired through training,

which allows it to autonomously determine redundant parts of the video.

2.3 Datasets

We used two datasets for this method, which are described in the following section.

TRECVID-VTT: The TRECVID-VTT dataset consists of datasets of the TRECVID

VTT task provided from 2016 to 2021. There were 10,862 videos with a length of 3–5

s, and each video had two to five captions written by an annotator. The breakdown

of the dataset was 6,475 Twitter Vine data, 1,009 Flickr data, and 3,376 Vimeo Cre-

ative Commons Collection (V3C) data. In the Twitter Vine data, 3,528 have captions

between two and five sentences, and all others have five captions. V3C1 is a dataset

that uses a portion of V3C data. The number of videos was 7,475, among which 2,008

were provided as test data for TRECVID2022. The 2,008 videos were captured by

annotators based on the following perspectives:

– Who: Who is in the video? Does it describe specific objects or entities (people,

animals, objects)?
– What: What are the objects and entities in the images doing? Does the video

describe an action or state?
– Where: Where was the video shot? Does the video describe a location (geographical

or architectural)?
– When: When was the video taken? Does the video describe the time of day, season,

or other temporal elements?

VATEX: We used the VATEX dataset to pre-train the model. The VATEX dataset

contains 41.3k videos with 10 captions in both English and Chinese. This dataset was

used in this study because the video length is less than 10 s, the domain is close to

that of the TRECVID-VTT dataset, and the quality is high.

2.4 Setups

The experimental setup is described in the following section. During the pre-training

phase, we used the official training set of the VATEX dataset as the training dataset.

We used the public test set as the test data for the evaluation. We randomly initialized

the initial parameters of the Transformer Encoder of the decoder. We used AdamW

as the optimization method, and the learning curve was a warm-up for 10% of the

total learning steps and linear decay thereafter. For pretraining, we used an official

implementation model. For fine-tuning, we used the TRECVID-VTT dataset as the

training dataset and trained for an additional 15 epochs.

2.5 Results

The results for each evaluation metric among our submitted run files are shown in

Table 2. We selected the run files submitted based on the validation data with high

accuracy and annotations of the TRECVID-VTT dataset.
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Table 2. Results of our submitted runs for TRECVID 2022 VTT task.

Runfile CIDER CIDER-D BLEU METEOR SPICE

1 0.415 0.178 0.033 0.260 0.077

2 0.348 0.141 0.026 0.252 0.084

3 0.350 0.150 0.028 0.260 0.087

4 0.388 0.182 0.037 0.286 0.100

2.6 Conclusion

For the TRECVID VTT task, we submitted the results of fine-tuning SwinBERT using

the TRECVID-VTT dataset. The five automatic evaluation metrics yielded results of

0.415, 0.182, 0.037, 0.286, and 0.100 for CIDER, CIDER-D, BLEU, METEOR, and

SPICE, respectively.

3 ActEV Task

3.1 Overview

The Activities in Extended Video (ActEV) series of evaluations were designed to accel-

erate the development of robust, multi-camera, automatic activity detection systems

in known and unknown facilities for forensic and real-time alerting applications. Ac-

tivities in extended videos are temporally and spatially dispersed, requiring algorithms

to detect and localize activities under a variety of collection conditions. We propose a

system that combines 3D ResNet [17] training using YOLOX [18] and ByteTrack [19]

trained models and achieved a value of 0.9961 for Pmiss @ 0.1RFA, 0.1080 for NMD

@ 0.1RFA, and 0.9964 for nAUDC @ 0.2RFA for a primary Activity and Object De-

tection (AOD) task, and 0.9829 Pmiss @ 0.1RFA and 0.9850 nAUDC @ 0.2RFA for a

secondary Activity Detection (AD) task.

3.2 Methods

This system comprises three steps: YOLOX for object detection, ByteTrack for track-

ing, and 3D ResNet for activity classification. YOLOX is a single-stage object detector

that makes several modifications to YOLOv3 using a DarkNet53 backbone. Specifi-

cally, the head of YOLO is replaced with a decoupled head. ByteTrack eliminates the

problem of non-detection by matching bounding boxes with low confidence values using

a motion model that uses a queue called tracklets, which indicates the object being

tracked. It also considers bounding boxes with low confidence values. 3D-ResNet is a

ResNet constructed using a 3D convolution to consider the time axis. The prediction

is made by placing videos created based on the tracking results obtained by YOLOX

+ ByteTrack into 3D ResNet, classifying the activities, and matching the results.

3.3 Experiments

YOLOX and ByteTrack were implemented in this study 11, and ByteTrack was imple-

mented based on this 12. YOLOX and ByteTrack were trained on the CrowdHuman

11 https://github.com/ifzhang/ByteTrack
12 https://github.com/facebookresearch/pytorchvideo

https://github.com/ifzhang/ByteTrack
https://github.com/facebookresearch/pytorchvideo
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[20] and MOT17 [21] half-train sets. The training data for this system were labeled for

only people. The first two steps used only the weights of the existing trained model.

The output of ByteTrack was then used to generate the input video for 3D ResNet.

The tracking results were joined together to form a single video and then stretched

and resized to produce a video with a 256 × 256 pixel resolution. However, the train-

ing videos were preprocessed using the kitware-meva-training tracking annotation for

the next processing step. 3D ResNet was trained on 53,027 square videos labeled for

activity created from annotations of the above-mentioned kitware-meva-training track-

ing. The videos were normalized at the time of training, and two data augmentations,

cropping to a pixel resolution of 224 × 224 and flipping the image horizontally, were

then applied. The model parameters included a learning rate of 1e-5, batch size of 8,

20 epochs, a momentum optimizer, a momentum of 0.9, and a weight decay of 1e-4.

3.4 Results

Our results for the two tasks, AOD and AD, are shown in the table below.

Table 3. Our results for TRECVID 2022 ActEV task.

Activity and Object Detection (AOD) Activity Detection (AD)

Pmiss @ 0.1RFA NMD @ 0.1RFA nAUDC @ 0.2RFA Pmiss @ 0.1RFA nAUDC @ 0.2RFA

0.9961 0.1080 0.9964 0.9829 0.9850

There are two major issues to be considered for this system. First, YOLOX +

ByteTrack, as mentioned above, only detects people and ignores other objects such

as cars. This system is composed of three steps, and if the system misses anything in

the first step, the mistake cannot be rectified. Therefore, training with the appropriate

labels, which we omitted in this study, is necessary. With the second method, 3D

ResNet, the input for the model is compressed down to eight frames, and thus a large

amount of information is missed. Because the video treated at this time is 5 min in

length, it is essential to update to a model that can handle more frames.
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evaluated video retrieval tasks at TRECVID 2022,” In Proc. of TRECVID 2022, 2022.

2. F. Faghri, D. J. Fleet, R. Kiros, and S. Fidler, “VSE++: Improved Visual-Semantic Em-

beddings,” arXiv:1707.05612, 2017.

3. C. Liu, Z. Mao, T. Zhang, H. Xie, B. Wang, Y. Zhang, “Graph Structured Network for

Image-Text Matching,” In Proc. of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020.

4. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,

P. Mishkin, J. Clark, G. Krueger, I. Sutskever, “Learning Transferable Visual Models

From Natural Language Supervision,” arXiv:2103.00020, 2021.



8

5. N. Mu, A. Kirillov, D. Wagner, S. Xie, “SLIP: Self-supervision meets Language-Image

Pre-training,” arXiv:2112.12750, 2021.

6. C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier, “Collecting Image Annotations

Using Amazon’s Mechanical Turk,” Proc. of the NAACLHLT 2010 Workshop on Creating

Speech and Language Data with Amazon’s Mechanical Turk, pp.139–147, 2010.

7. P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions to visual

denotations: New similarity metrics for semantic inference over event descriptions,” Trans-

actions of the Association for Computational Linguistics. vol.2, pp.67–78, 2014.

8. T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D.

Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,”

arXiv:1405.0312, 2014.

9. P. Sharma, N. Ding, S. Goodman, and R. Soricut, “Conceptual Captions: A Cleaned,

Hypernymed, Image Alt-text Dataset For Automatic Image Captioning,” Proc. of the

56th Annual Meeting of the Association for Computational Linguistics, pp. 2556–2565,

2018.

10. R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalanditis,

L.-J. Li, D.A. Shamma, M.S. Bernstein, L. Fei-Fei, Y. Kalantidis, L.-J. Li, D.A. Shamma,

M.S. Bernstein, and F.-F. Li, “Visual Genome : Connecting language and vision using

crowdsourced dense image annotations,” arXiv:1602.07332, 2016.

11. J. Xu, T. Mei, T. Yao, Y. Rui, “MSR-VTT: A Large Video Description Dataset for Bridg-

ing Video and Language,” In Proc. of the IEEE International Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

12. Wang, Xin and Wu, Jiawei and Chen, Junkun and Li, Lei and Wang, Yuan-Fang and

Wang, William Yang, “VaTeX: A Large-Scale, High-Quality Multilingual Dataset for

Video-and-Language Research” The IEEE International Conference on Computer Vision

(ICCV) 2019.

13. Lin, Kevin and Li, Linjie and Lin, Chung-Ching and Ahmed, Faisal and Gan, Zhe and

Liu, Zicheng and Lu, Yumao and Wang, Lijuan, “SwinBERT: End-to-End Transformers

with Sparse Attention for Video Captioning” Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR) 2022.

14. Liu, Ze and Ning, Jia and Cao, Yue and Wei, Yixuan and Zhang, Zheng and Lin, Stephen

and Hu, Han, “Video Swin Transformer” Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) 2022.

15. Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones,

Llion and Gomez, Aidan N and Kaiser,  Lukasz and Polosukhin, Illia, “Attention is All

you Need” Thirty-first Conference on Neural Information Processing Systems(NeurIPS)

2017.

16. Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng

and Lin, Stephen and Guo, Baining, “Swin Transformer: Hierarchical Vision Transformer

using Shifted Windows” Proceedings of the IEEE/CVF International Conference on Com-

puter Vision (ICCV) 2021.

17. K. Hara, H. Kataoka, and Y. Satoh, ”Learning spatio-temporal features with 3d residual

networks for action recognition,” In ICCV, 2017.

18. Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ”Yolox: Exceeding yolo series in 2021,” arXiv

preprint arXiv:2107.08430, 2021.

19. Y. Zhang, P. Sun, Y. Jiang, D. Yu, Z. Yuan, P. Luo, W. Liu, and X. Wang,

”Bytetrack: Multi-object tracking by associating every detection box,” arXiv preprint

arXiv:2110.06864, 2021.

20. S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun, ”Crowdhuman: A bench-

mark for detecting human in a crowd,” arXiv preprint arXiv:1805.00123, 2018.

21. A. Milan, L. Leal-Taixe, I. Reid, S. Roth, and K. Schindler, ” Mot16: A benchmark for

multi-object tracking,” arXiv preprint arXiv:1603.00831, 2016.


	Waseda_Meisei_SoftBank at TRECVID 2022
	AVS Task
	System Overview
	Embedding Models
	Inference Procedure
	Submissions and Results

	VTT Task
	Introduction
	Methods
	Datasets
	TRECVID-VTT:
	VATEX:

	Setups
	Results
	Conclusion

	ActEV Task
	Overview
	Methods
	Experiments
	Results



