DCU ADAPT at TRECVID 2022

Deep Video Understanding Challenge

A. Potyagalova, Gareth J. F. Jones Dublin City University, Ireland

Overview

- Introduction
- Approach
- Scene-level track
- Movie-level track
- Results and Conclusions
- Questions

Introduction

Approach

- Scene-level track solution includes recognition of actions and looking for the closest term.
- Movie-level track approach focused on building a knowledge graph based on the full-text description of the movie.
- Results Achieved reasonably good results (11.00% accuracy) for the scene-level track, but results for the movie-level track were not good enough for final submission.
- Ways to improve Process the knowledge graph for movies to clarify the relations between entities; perform a more detailed analysis of the timeline of the actions for video segments

Approach

General scheme

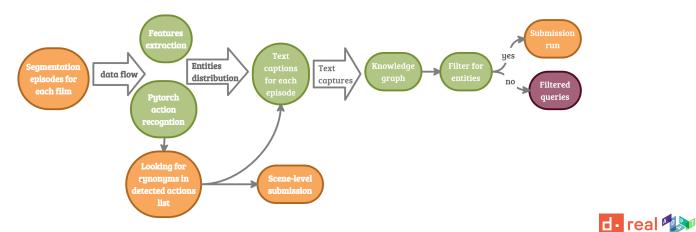


Figure 1: General workflow of the proposed approach

Approach

General scheme

Algorithm for movie processing:

- Recognize the actions in the short video episodes
- Detect the entities in the movie segments using the reference images
- Generate the text capture for segments by combining the results of previous stages
- Create the piece of text describing the whole movie; forms the base of the knowledge graph
- Build the knowledge graph for the whole movie

Approach

Scene-level

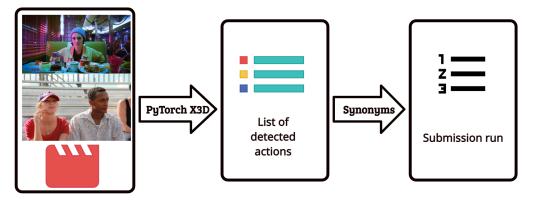


Figure 2: General description of scene-level solution

Approach Movie-level

Figure 3: General description of movie-level solution

Scene-level track

Scene-level track

Action recognition

Figure 4: Recognition of actions for video segments

- Process movie segments
- Create several variants of lists using different X3D models

Scene-level track

Search for the synonyms

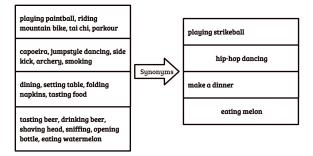


Figure 5: Search for coincidences and synonyms

- Process lists using the Gensim library
- Submit detected coincidences or synonyms

Movie-level track

Movie-level track

Caption generation

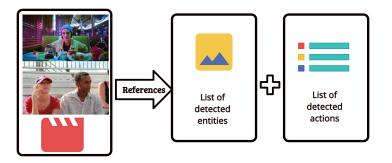


Figure 6: Building the capture using the entities and previously recognized actions

- Detect the required entities in the movie segments
- ▶ Using the results from the scene-level actions lists, create the text caption for each movie episode

Movie-level track

Knowledge graph

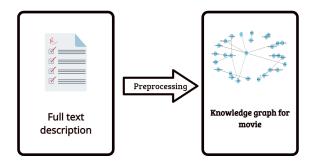


Figure 7: Building the knowledge graph based on the text descriptions

- Preprocess the text descriptions
- Build the knowledge graph
- Preprocess the knowledge graph to clarify relations between entities (unfinished)

Results and scores

Table 1: TRECVID-2022 results

Scene-level task results			
Team	Points	Percentage	
Columbia_1	11.35	15.8%	
Adapt	11.00	15.3%	
Columbia_2	8.35	11.6%	
WHU_NERCMS_1	8.00	11.1%	
WHU_NERCMS_2	2.25	3.1%	

Results and scores

Table 2: Detailed scene-level results

Scene-level results for each movie			
Movie	Points	Average	
Calloused hands	1.00	0.083	
Chained for life	1.00	0.083	
Liberty kid	3.00	0.25	
Like me	3.00	0.25	
Little rock	0.0	0.0	
Losing ground	3.00	0.25	

Future plans

- **Text descriptions** Prepare more accurate and detailed text descriptions
- Action recognition Create the timeline for the episodes with accurate correspondence between action and timestamp
- **Knowledge graph** Add the extra parameters to the text parsing algorithm

