ABSTRACT

This paper describes an overview of Elyadata’s
participation in the TRECVID [1] 2022 evalua-
tion. We participated only in the Video to Text
Description (VIT) sub-task. We experimented
with various approaches using a combination of
a Vision-Language Pre-trained framework and
spatio-temporal Transformer architecture.

Keywords: TRECVid, Video Captioning, Video to
Text Description.
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Figure 1: Architecture of the BLIP model for image cap-
tion generation when fine-tuning.

BLIP [2] (See figure 1) is a video-language
pre-training framework (VLP). It stands for
Bootstrapping Language-Image Pre-training.
This framework pre-trains models by using a vari-
ant of knowledge distillation called Caption and
Filtering (CapFilt), where a captioner model and
a filter model distill their knowledge. This en-
abled the use of millions of web-sourced images
with a relatively good caption quality for pre-
training. Another particularity of BLIP is the use
of an Image-Text Contrastive loss which permit-
ted the feature alignment between the visual and
textual features generated by the encoders.

The models can later be fine-tuned on a variety of
downstream image-language or video-language
tasks, such as image captioning.
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METHODS

Four runs were submitted for this task:

Run 1: Image captioning. (BLIP)

Run 2: Multiple frame sampling + frame
captioning. (BLIP)

Run 3: Spatio-Temporal video captioning.
(TimeSBLIP)

Run 4: Caption selection based on confi-

dence score from the three other runs. (BLIP
+ TimeSBLIP)
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Figure 2: TimeSBLIP architecture.

TimeSBLIP 2 is the model proposed by the Elya-
data team. It was obtained by combining a TimeS-
former [3] spatio-temporal transformer encoder
with the BLIP text decoder. The idea is to lever-
age the both the heavy pre-training of BLIP and
the time dimension representation of the TimeS-
former architecture.

In order to link the TimeSformer encoder with
the BLIP decoder, a transformation must be per-
formed on the encoder output in order to match
the cross-attention dimension (see figures 1 and
2). Super-imposing and summing the spatial and
temporal features was adopted as strategy for this
submission.

RESULTS

—LYA
DATA

Run BLEU@4 METEOR CIDEr CIDEr-D SPICE 65151 6ST52 ST53 ST54 ST55
1 6.936 24.84 50.70 22.60 10.20 4211 41.89 4199 4191 41.51
2 1.298 17.83 10.30 4.50 4.30 23.57 2401 23.02 23.78 23.86
3 1.403 16.92 24.30 7.60 6.20 35.70 34.13 33.51 33.61 36.27
2t 3.414 19.41 23.40 10.50 6.40 30.83 30.34 2994 30.34 30.73

Table 1: Submission results for the four runs on the TRECVid 2022 dataset.

The four submitted runs yielded the results re-
ported in Table 1. The results corroborate what
was observed on the validation scores during
training: the best performing model is BLIP for
image captioning, thanks to its pre-training and
feature alignment process. Video captioning sys-
tems performed much worse.

Overall, the first system performed well, espe-
cially in the CIDEr-D and STS metrics, placing
among the best performing submissions.

The TimeSBLIP model shows promise and given
the reintroduction of a multimodal feature align-

CONCLUSION

This report presents the submitted systems for the
Video To Text description (VTT) task for the 2022
edition of TRECVid.

e All systems are BLIP-based.

e The image captioning variant performed
best, whereas both video captioning mod-
els, although more confident in their cap-
tioning in some instances, performed far
worse.

These models were either a direct conver-
sion of BLIP [2] for video captioning or
a modification of the latter, consisting in
the replacement of its ViT [4] encoder by a
TimeSformer [3] module.
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ment mechanism, performance could improve.
Other fields of improvement include the connec-
tion between the TimeSformer encoder and the
text decoder: Instead of simply summing-up the
spatio-temporal features, other strategies that per-
mit their isolation could be tried, such as convolu-
tions, average and max pooling. This work is left
for the future.

The fourth run performed worse than the first.
This shows that even though the image caption-
ing system obtained the highest scores in all the
evaluations, it is less confident about some of its
captions than other models.
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