

PKU_WICT at TRECVID 2022: Disaster Scene Description and Indexing Task

Yanzhe Chen, HsiaoYuan Hsu, James Ye, Zhiwen Yang, Zishuo Wang, Xiangteng He, and Yuxin Peng*

Wangxuan Institute of Computer Technology, Peking University Beijing, China {pengyuxin@pku.edu.cn}

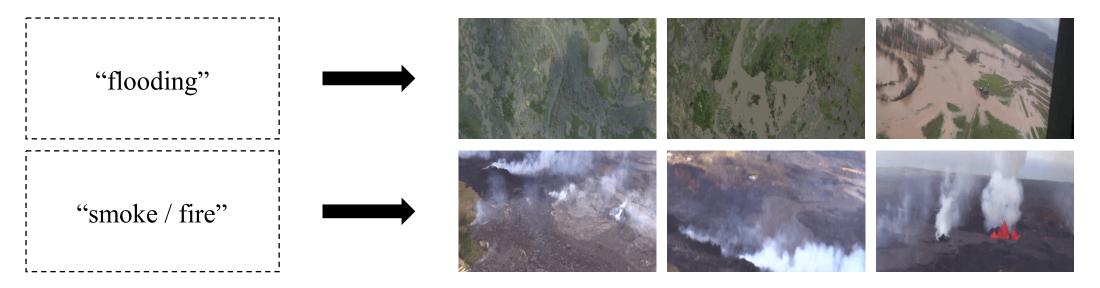
• Our approach

• Results and conclusions

- Disaster Scene Description and Indexing (DSDI) task
 - -Given disaster-related features, retrieve videos containing each of them
 - -Development set:

LADI (Low Altitude Disaster Imagery) dataset: in subtask "L"

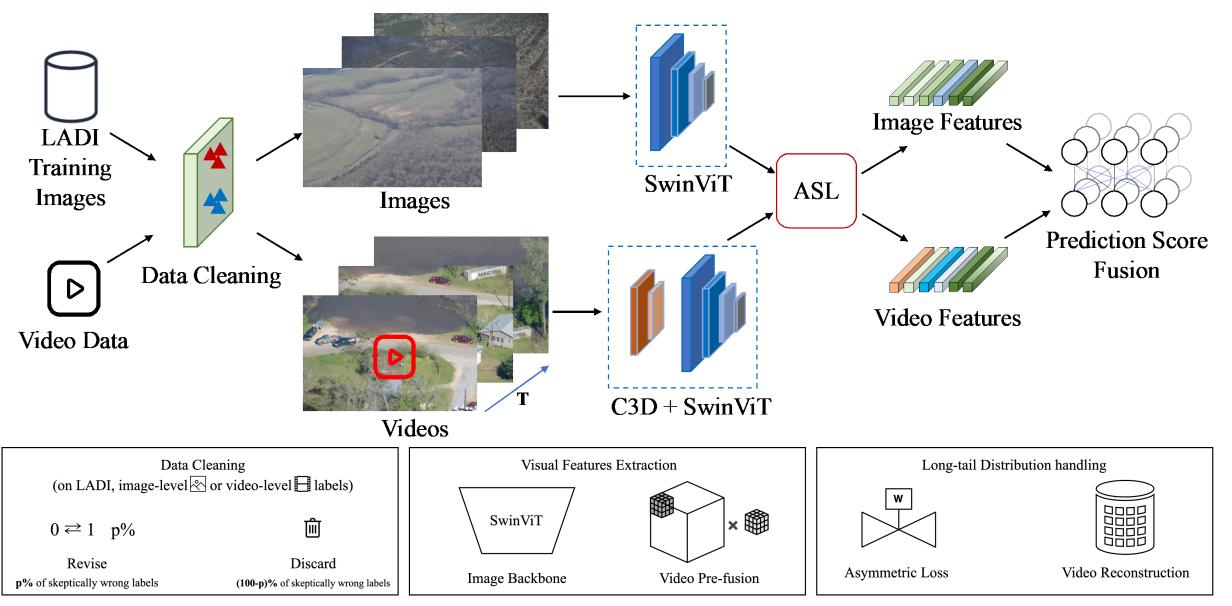
□LADI + Others: in subtask "O"



• Our approach

• Results and conclusions

Our approach



• Motivation: Alleviate noise of the annotations in the LADI dataset

- Method: Confident learning
- Strategies:
 - -Revise: samples with low confidence in the training set are revised
 - **—Discard:** samples with low confidence in the training set are discarded directly
 - **—Hybrid:** a portion of samples with the lowest confidence are revised, while the rest of them are directly discarded

Curtis Northcutt, Lu Jiang, Isaac Chuang, "**Confident learning**: Estimating uncertainty in dataset labels", Journal of Artificial Intelligence Research (JAIR), 2021, 70: 1373-1411.

Image Feature Extraction

- The backbone model plays an important role in the DSDI task
- We trained three backbones with the LADI dataset and evaluated on the DSDI-2021 testing set

Backbone	mAP
EfficientNet-B5	23.62
ViT	25.49
SwinViT	27.97

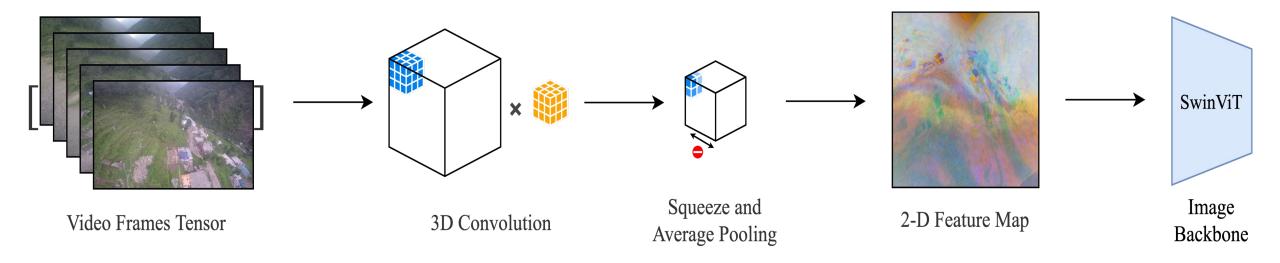
EfficientNet-B5:Efficientnet: Rethinking model scaling for convolutional neural networks, International conference on machine learning (ICML), 2019

ViT: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv, 2020.

SwinViT:Swin transformer: Hierarchical vision transformer using shifted windows. International Conference on Computer Vision (ICCV). 2021 8

Video Feature Extraction

- Motivation: Correlation between frames and temporal information can help understand videos
- Method: 3D CNN + 2D image backbone (fine-tuned on LADI)



• ASL loss is applied since the LADI dataset shows a long-tail distribution:

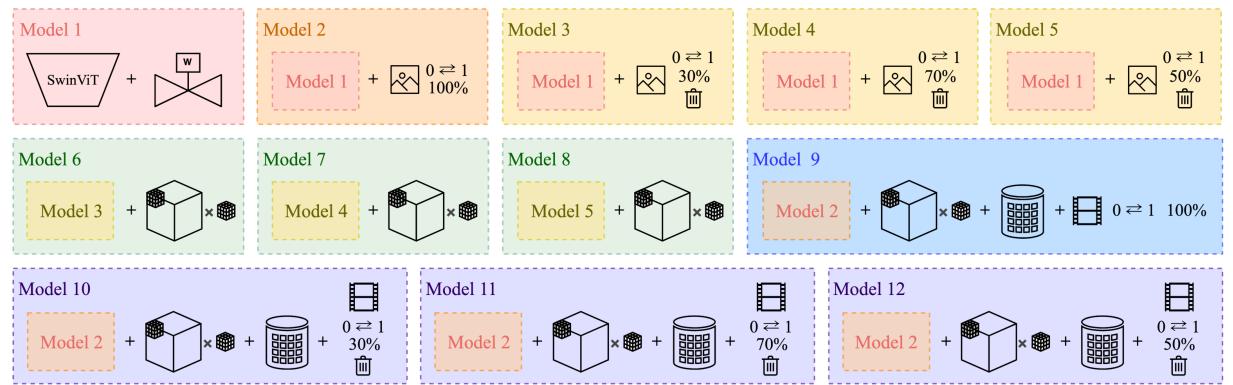
$$L_{+} = (1-p)^{\gamma_{+}} \times \log(p)$$
$$L_{-} = p_{m}^{\gamma_{-}} \times \log(1-p_{m})$$

ASL loss: Asymmetric loss for multi-label classification. International Conference on Computer Vision, 2021.

Prediction Score Fusion

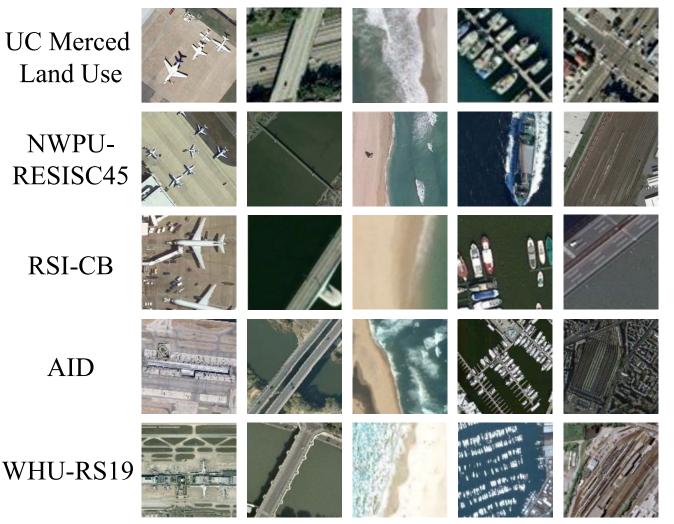
- Models with Different Settings
 - -Structure: image-level / video-level
 - -Confident Learning: dropping-bases / flipping-based
 - -Hyper-parameters: learning rates, weight decay

- Fusion Strategy
 - —Assigning Weights: {0,1,2}
 - -Normalization
 - -Weighted Average



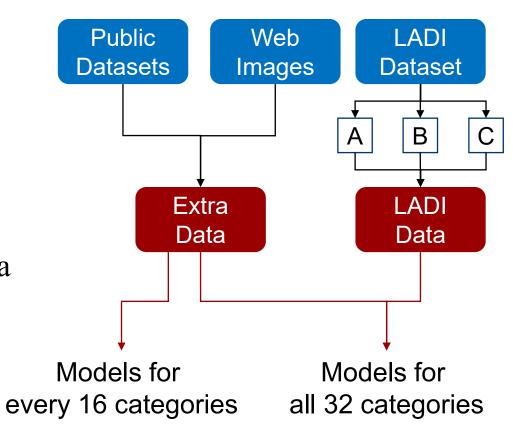
11

- Collecting Images from Other Public Datasets
 - Remote Sensing Datasets
 - UC Merced Land Use
 - NWPU-RESISC45
 - RSI-CB
 - AID
 - WHU-RS19
 - 16 categories in total



LADI + Other (O)

- Collecting Images from Web Image Crawling
 - Categories (Not covered in public datasets)
 - Landslide, washout, rubble, ...
- Extra Data Utilization Strategy
 - A: all LADI data
 - B: same amount of LADI data + Extra data
 - C: filtered LADI data
- Fine-tuning O models from L models
 - Models for every 16 categories
 - Models for all 32 categories

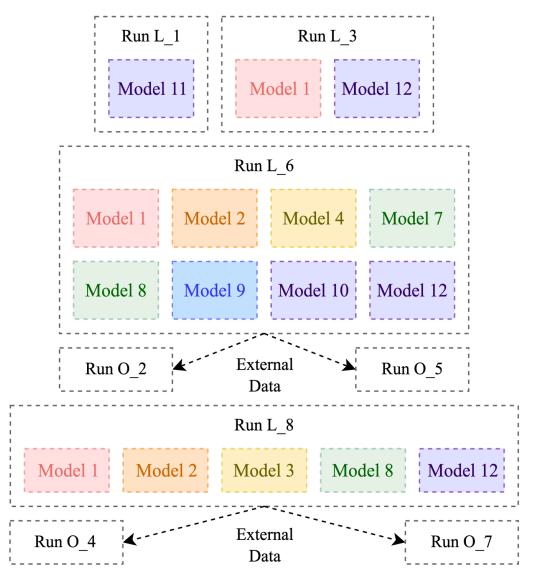


• Our approach

• Results and conclusions

Results and conclusions

Туре	ID	MAP
L	L_PKU_WICT_1	0.4653
	L_PKU_WICT_3	0.4678
	L_PKU_WICT_6	0.4680
	L_PKU_WICT_8	0.4227
Ο	O_PKU_WICT_2	0.4995
	O_PKU_WICT_4	0.4819
	O_PKU_WICT_5	0.4287
	O_PKU_WICT_7	0.5006



Results and conclusions

• Conclusions

- Data cleaning is helpful to improve the accuracy of retrieval
- Combination of image and video feature extraction is a key factor for the DSDI task
- More attention to the fine-grained classification and the combination of more welldesigned loss functions may be helpful

• Our approach

• Results and conclusions

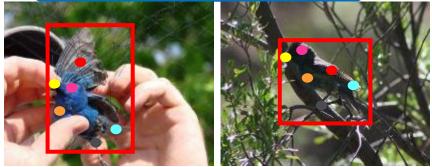
Fine-grained Image Classification

- Fine-grained Image Classification: Recognize **fine-grained** categories of **coarse-grained** categories (e.g., recognize birds as Great Crested Flycatcher or Acadian Flycatcher)
- One of the most challenging tasks: Birds are easily disturbed by **deformation**, **occlusion**, **background** and other complex factors

-Small inter-class variance, and Large intra-class variance

- -Dataset contains 200 categories, each with less than 30 training images
- -Can be extended for other complex objects like airplane

Great Crested Flycatcher Acadian Flycatcher



Indigo Bunting

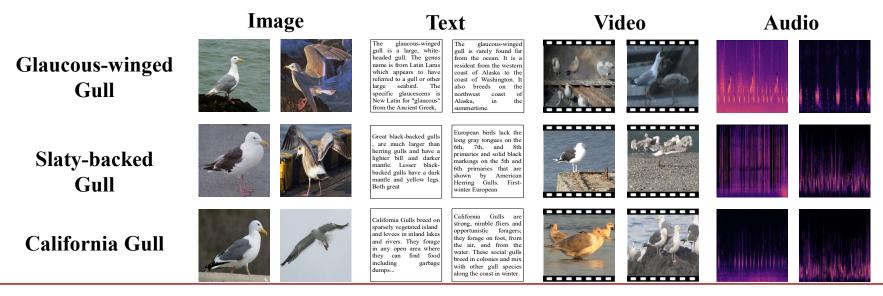
Fine-grained Image Classification

- Existing methods neglect discriminative regions' interdependencies and composed holistic object structure.
- We propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning to contain both the appearance information and structure information (SIM-Trans: Structure Information Modeling Transformer for Fine-grained Visual Categorization, ACM MM 2022)

A series of our related researches

- Fine-grained Visual-textual Representation Learning^[TCSVT 2020]
- Multi-scale and multi-granularity deep reinforcement learning^[IJCV 2019]
- Fine-grained cross-media retrieval [ACM MM 2019]
- **Data augmentation based on selection and generation**[ACM MM 2018]
- Fine-grained visual-textual representation learning^[CVPR 2017]
- Saliency-guided fine-grained discriminative localization [ACM MM 2017]

- A new dataset and benchmark (PKU FG-XMedia) for fine-grained cross-media retrieval is constructed
 - The first dataset and benchmark with **4 media types (image, text, video and audio)** for fine-grained cross-media retrieval
 - Consists of 200 fine-grained subcategories of the "Bird"



Download URL: https://github.com/PKU-ICST-MIPL/FGCrossNet_ACMMM2019 Xiangteng He, Yuxin Peng and Liu Xie, "A New Benchmark and Approach for Fine-grained Cross-media Retrieval", *ACM MM*, 2019.

Contacts

Contact

- Email: pengyuxin@pku.edu.cn
- Lab Website:
 - http://www.wict.pku.edu.cn/mipl
- Github:
 - https://github.com/pku-icst-mipl

多媒体信息处理研究室 Multimedia Information Processing Lab (MIPL)

MIPL GitHub

MIPL WeChat Official Account