

RUCAIM3-Tencent at TRECVID 2022: Video-to-Text Description

Zihao Yue, Yuqi Liu, Liang Zhang, Linli Yao, Qin Jin Renmin University of China Dec.7, 2022

Introduction

Video-to-Text Description (VTT)

- automatically generate a single-sentence description in natural language for a given video.

• An Asian man playing an electronic guitar in an indoor setting.

Dominant Approach: encoder-decoder framework

- encoder encodes videos into visual representations
- decoder generates captions conditioned on the encoder output

Introduction

our last year's solution (Zhang, et al.): Concept-Enhanced Pre-training-based Model (CE-PTM)

- Concept Encoder: encode concept (from an off-the-shelf concept extractor) representations
- Bert-like pre-training task (Video-guided Masked Language Modeling, VMLM)
- next-token prediction for fine-tuning (Modified VMLM)
- best CIDEr score: 36.0, ranking 1st

Introduction

Vision-Language Pre-training (VLP) Models

- UniVL (Luo, et al., 2020), Oscar (Li, et al., 2020), CLIP (Radford, et al., 2021) ...
- learn effective representations from large-scale image-text data

Leveraging VLP Models for VTT

image-text models or video-text models?

- the amount of video-text data is not as large as that of image-text data
- we therefore consider to leverage image-text pre-trained models for videos tasks
- our choice is **BLIP** (Li et al., 2022)

Introduction - BLIP

- <u>Bootstrapping Language-Image Pre-training</u>
- multi-task: image-text contrastive, image-text matching, language modeling
- pre-trained on a bootstrapped dataset with 129M images and paired captions

BLIP4video

our model structure

Data Augmentation

solving the problem of insufficient fine-tuning data

Candidates Re-ranking

best candidates selection

Methodology - BLIP4video

BLIP4video: structurally identical to BLIP, but supports the input of frame sequence

video-grounded text decoder: next-token prediction for caption generation

video-grounded text encoder: calculates a matching score between video and text

Methodology - Data Augmentation

pseudo-label-based data augmentation

refinement: calculating CIDEr scores and filtering with a threshold

j×k candidates per video

- *j* inferences $I_{1,2,...,j}$ with different randomly selected frames as input for each video
- **k** sentences $S_{i1,i2,...,ik}$ for each inference

two measures

- Cross-modal Matching (CMM)
- Mutual Similarity Evaluation (MSE)

mutual similarity evaluation

cross-modal matching

two procedures

- CMM intra-inference & MSE inter-inference <CMM, MSE>
- top-beam intra-inference and MSE inter-inference <top-beam, MSE>

video input details

- 8 frames of 224×224 per video
- TSN sampling during training
- uniform sampling during inference

training details (3-stage training)

- **stage-1** (if adopted): training with *Extended datasets*
- stage-2: training with VTT data (and augmentation data)
- stage-3: SCST with VTT data

TSN sampling (Wang, et al., 2016) divides the video equally into *k*

segments and select one frame

from each randomly

SCST (Rennie, et al., 2017) Self-critical Sequence Training we implement SCST as in VinVL (Zhang, et al., 2021)

Experiment - Implementation Details

2 rounds of data aumentation

- 1st round
 - learning Aug-Model-1 from extended datasets, to generate Aug-1
 - *Aug-Model-1*'s validation performance: 51.8 (CIDEr)
 - *Aug-1*: 17,939 captions adopted (~48% of *VTT16-20*)
- 2nd round
 - learning *Aug-Model-2* from <u>VTT datasets</u> and <u>Aug-1</u>, to generate <u>Aug-2</u>
 - *Aug-Model-2*'s validation performance: 52.8 (CIDEr)
 - Aug-2: 18,784 captions adopted (~50% of VTT16-20)

nearly doubling the training data scale

2 final version models

- *Final-Model-1*: fine-tuned with VTT data and augmentation data
- *Final-Model-2*: fine-tuned with VTT data, augmentation data and validation set

<u>4 runs</u>

- *run1, run2*: generated by *Final-Model-1*; re-ranked by procedure A and B, respectively
- *run3, run4*: generated by *Final-model-2*; re-ranked by procedure A and B, respectively

Run Name	Model						
	Name	E	CIDEr	procedure			
		Training stage-2	Training stage-3	Validation			
run1 run2	Final-Model-1	VTT16-20, Aug $1-2_{C>50}$ (74,158)	VTT16-20 (37,435)	VTT21 (8,385)	53.9	A B	
run3 run4	Final-Model-2	VTT16-21, Aug $1-2_{C>60}$ (74,845)	VTT16-21 (45,820)	-	-	A B	

Run Name	Validation Performance				Submission Scores				
	CIDEr	BLEU@4	METEOR	ROUGE_L	CIDEr	BLEU@4	METEOR	SPICE	STS
run1	54.9	28.8	22.4	46.4	59.4	13.5	41.2	18.2	53.0
run2	54.1	29.5	22.2	46.6	57.5	13.2	40.9	18.0	52.8
run3	-	-	-	-	60.2	13.3	41.5	18.4	53.4
run4	-	-	-	-	59.2	13.5	41.4	18.3	53.0

- our VLP-based solutions set new performance records
- using both training and validation data, run3&4 outperform run1&2
- both re-ranking procedures excel in different evaluation metrics respectively
 - <top-beam, MSE> performs better on BLEU@4
 - <CMM, MSE> better on others

Row	Data Augmentation		Training Strategy	Re- ranking		Perform.	
	Aug-1	Aug-2	SCST	A	В	CIDEr	
1 2 3 4		√ √	✓			48.2 52.8 53.6 53.9	
5 6		\checkmark		 ✓ 	\checkmark	54.9 54.1	

Ablation Study of key components

- data augmentation contributes a lot
- SCST is helpful
- re-ranking is helpful
 - <CMM, MSE> works better on CIDEr

Experiment - Cases

a man is playing a guitar in a room with posters on the wall

a black bird with a red beak is standing on the rocks near the ocean on a sunny day

a silhouette of a woman is shown in a profile against a white background

a man in a suit and hat is holding a sign in front of a stone wall on a city street

Conclusion

RUCAIM3-Tencent's solutions for VTT

- a strong baseline by fine-tuning a VLP model on the VTT task
- effective data augmentation and candidates re-ranking strategies

ranks 1st in all evaluation metrics (BLEU, METEOR, CIDER, SPICE, and STS)

best CIDEr score: 60.2 (67.2% higher than last year's best result)

Limitations - Methodology

Is our model good enough?

BLIP4video

- each frame is encoded separately to a final visual representation
- lacking inter-frame dynamics encoding

future works

- better video representation learning
 - extending the visual understanding capabilities of VLP models from images to videos
 - video-text pre-training

Limitations - Benchmark

Is our benchmark challenging enough?

lack of videoness

- many videos in the VTT data are informatively static
- image captioning systems are easily

competent for videos

a more challenging benchmark requires
 cases with more videoness

- An Asian man playing an electronic guitar in an indoor setting.
- An Asian guitarist plays his guitar inside a bar with colorful posters on the wall.
- An Asian man in a black jacket playing a guitar indoors.
- A man wearing a black jacket is playing a guitar indoors.
- Young man with black hair wearing black leather jacket plays electric guitar inside a dark room surrounded by posters.

n metrics reasonable enough?	Group		GT	Prec	ction BLEU@4			
	oroup	CIDEr	BLEU@4	CIDEr	BLEU@4			
so motrics	1	36.8	16.7	51.3	25.6			
	2	36.3	16.4	50.4	25.5			
na mayah laga than maalala	3	36.0	16.2	50.1	25.6			
re much less than models	4	37.5	16.9	49.8	25.7			
	5	36.9	17.0	50.9	25.5			
	avg.	36.7	16.6	50.5	25.6			

Are our evaluation

how GTs score on thes

human experts sco

existing metrics

- increasingly fail to measure the accuracy of generated descriptions
- other aspects (including fluency and diversity) are ignored
- representation learning-based metrics (CLIP score, et al.)? poor interpretability

future work

exploring better evaluation metrics for the VTT task

Thanks!

Feel free to contact us: yzihao@ruc.edu.cn gjin@ruc.edu.cn