Feature Fusion and Negation
Understanding for Ad-hoc Video Search

Aozhu Chen, Ziyue Wang, Fan Hu, Kaibin Tian, Xirong Li

AIMC Lab, School of Information, Renmin University of China
(TRECVID team ID: RUCMM)

https://ruc-aimc-lab.github.io/

6 December 2022


https://ruc-aimc-lab.github.io/

Key question in Ad-hoc Video Search (AVS)

* How to estimate the relevance of an unlabeled video
w.r.t a specific text query ?

Text query allows human to express

© what we do want : & what we do NOT want :

A man is holding a knife in a A man is holding a knife in a
kitchen location non-kitchen location (730)




Our Solution

Based on two techniques: Feature Fusion + Bidirectional Negation Learning
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Abstract. In this paper we revisit feature fusion, an old-fashioned topic,
in the new context of text-to-video retrieval. Different from previous
research that considers feature fusion only at one end, let it be video or
text, we aim for feature fusion for both ends within a unified framework.
‘We hypothesize that optimizing the convex combination of the features is
preferred to modeling their correlations by computationally heavy multi-
head self attention. We propose Lightweight Attentional Feature Fusion
(LAFF). LAFF performs feature fusion at both early and late stages and
at both video and text ends, making it a powerful method for exploiting
diverse (off-the-shelf) features. The interpretability of LAFF can be used
for feature selection. Extensive experiments on five public benchmark sets
(MSR-VTT, MSVD, TGIF, VATEX and TRECVID AVS 2016-2020)

justify LAFF as a new baseline for text-to-video retrieval.
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1 Introduction

Text-to-video retrieval is to retrieve videos w.r.t. to an ad-hoc textual query
from many unlabeled videos. Both video and text have to be embedded into
one or more cross-modal common spaces for text-to-video matching. The state-
of-the-art tackles the task in different approaches, including novel networks for
query representation learning [59, 65|, multi-modal Transformers for video rep-
resentation learning [3, 19], hybrid space learning for interpretable cross-modal
matching [15,60], and more recently CLIP2Video [17] that learns text and video
representations in an end-to-end manner. Differently, we look into feature fusion,
an important yet largely underexplored topic for text-to-video retrieval.

Given video/text samples represented by diverse features, feature fusion aims
to answer a basic research question of what is the optimal way to combine these
features? By optimal we mean the fusion shall maximize the retrieval perfor-
mance. Meanwhile, the fusion process shall be explainable to interpret the im-
portance of the individual features. As the use of each feature introduces extra
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Query  Kids are sitting on the floor A woman singing and not A man sits and he doesn't eat
and not playing with the dog walking down the street hotdog
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Figure 1: Top-1video retrieved by different models, i.e. W2VV+ [19], SEA [20], CLIP [28], CLIP* (fine-tuned by this work),
CLIP4Clip [25] and our CLIP-bnl, which is CLIP re-trained with proposed negation learning. This paper presents the first study
on a learning based method for handling negation in text-to-video retrieval (nT2VR). Data source: MSR-VTT [32].

ABSTRACT

Negation is a common linguistic skill that allows human to express
what we do NOT want. Naturally, one might expect video retrieval
to support natural-language queries with negation, e.g., finding
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shots of kids sitting on the floor and not playing with a dog. How-
ever, the state-of-the-art deep learning based video retrieval models
lack such ability, as they are typically trained on video description
datasets such as MSR-VTT and VATEX that lack negated descrip-
tions. Their retrieved results basically ignore the negator in the
sample query, incorrectly returning videos showing kids playing
with dog. This paper presents the first study on learning to under-
stand negation in video retrieval and make contributions as follows.
By re-purposing two existing datasets (MSR-VTT and VATEX), we
propose a new evaluation protocol for video retrieval with negation.
We propose a learning based method for training a negation-aware
video retrieval model. The key idea is to first construct a soft nega-
tive caption for a specific training video by partially negating its
original caption, and then compute a bidirectionally constrained
loss on the triplet. This auxiliary loss is weightedly added to a stan-
dard retrieval loss. Experiments on the re-purposed benchmarks

BNL [Wang et al., ACMMM'22]

Focus on Negation-Aware Video Retrieval




Technique 1 LAFF based Video Retrieval
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, Transforming features into d-dimensional feature vector :
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7 Aggregating the transformed features into a combined feature :
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Lightweight Attentional Feature Fusion (LAFF)



Technique 1 LAFF based Video Retrieval
 How to use LAFF?

Video Sentence
q

e1(x) e1(q)
LAFF ——>A ) @«—LAFF

a dog is
sitting in
front of a
door with a
bag and a
flashlight

e(z) e2(q)
FAEES——xA <«— LAFF

h
s(z,q) = Z similarity(e;(x),ei(q))

It supports feature fusion at both text and video ends to exploit diverse (off-the-shelf) features.



Technique 2 BNL for Negation-Aware Video Retrieval

Re-purpose video-caption datasets

Video Video

Original A man is playing the guitar while

Original / / :
caption 9 A car is being flipped over

dancing with many other people caption

Negated A man js playing the guitar while not ~ Negated A car jsn't being flipped over
query . . query
dancing with many other people

Insert negation cue before verbs or after auxiliary verbs.



Technique 2 BNL for Negation-Aware Video Retrieval

Bidirectional Constraint Loss

____________________________

m2 4—». i a man is playing the
ml @ i guitar while dancing

' with many other people i

Not relevant

partially relevant @ relevant

0 similarity with x* 1
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partially relevant @ relevant | amanisplaying the |
| guitar while not dancing !

0 similarity with q 1 :  with many other people |
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x~ :irrelevant video x® : hardest negative video x ¥ : relevant video m, : hyper parameter

q~ : soft negative cpation g : raw sentence s(-,-) : similarity
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Technique 2 BNL for Negation-Aware Video Retrieval

 How to use BNL?

CLIP-bnl :
Using the BNL loss to retrain CLIP(ViT-B/32) by a negation-enriched version of MSR-VTT

CLIP-bnl is used in the following two manners:
* As a cross-modal extractor for both video and query representation.

 As a re-ranking module specifically used for queries that have negative
cues automatically detected.




RUCMM Video Search Engine

Query ——

V3C2 dataset

|

LAFF based retrieval model

— Top-ranked list of 5k videos

. YES
» _Negative cue

NO

> CLIP-bnl

CLIP(ViT-L/14)@336

I
I
I
I
I
I
I
o Top-ranked list of 1k videos
I
I
I
I
I
I

Fine-grained Re-ranking Module



Choice of (Pre-)Training Data

Three public datasets for training

Dataset #Videos | #Sentences
MSR-VTT (CVPR2016) | 10,000 200,000
TGIF (CVPR2016) 100,855 | 124,534
VATEX (ICCV2019) 32,239 259,909

#1 a crowd at a music festival
#2 a concert with people on the stage

One self-built video-text dataset for pre-training

Dataset Frame/segment/Video Num | Sentence Num

V3Cl-pseudo-caption | 1,605,335/219,530/9,760 436,203

10 e



Choice of Video/ Text Feature

Seven video features & Six text features

Video Features | Dimensionality Text Features Dimensionality
irCSN 204
CS 048 BoW 10k+
ResNeXt101 2048
. wav 300
BEIT 2048
BLIP256 256
BLIP256 256
CLIP(B/32) 512
CLIP(B/32) 512
CLIP-bnl(B/32) 512
CLIP-bn/(B/32) 012 CLIP(L/14)@336 768
CLIP(L/14)@336 768

Heavy text encoders:

« BoW: High dimensions
« W2V: Big storage

11 e



Internal experiments

Heavy text encoders:

Can we remove the bow and w2v when using LAFF ?

BoW: High dimensions
W2V: Big storage

Run id V16 [TV17 TV18 V19 | TV20 V21 |MEAN
Run 4 0.282 0.368 0.197 0.255 0.361| 0.365 0.305
Run 3 0.280 0.350 0.178 0.244 0.319| 0.326 0.283
Run 4. LAFF

Run 3: LAFF (w/o BoW and W2V)

12 e



Submissions (fully automatic track)

We submitted the following 4 runs:
* Run 4. LAFF

* Run 3: LAFF (w/o BoW and W2V)

* Run 2 : Late average fusion of Run3 on test queries and
narrative of queries.

* Run 1: Late average fusion of multiple augmented query
retrieval results.

NOTE: Search result reranking is applied on all Runs
13



Benchmark evaluation

Our submissions ranked the 2rd
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Retrospective experiments

Can we remove the BoW and W2V when using LAFF ?

Run id TV22

Run 4 0.257

Run 3 0.258
infAP

0.900
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0.700
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0.000

* Run 4. LAFF
* Run 3: LAFF (w/o BoW and W2V)
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Query id

Those heavy text encoders (BoW and W2V) can be removed.
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Retrospective experiments
 Is BNL Effective?

* As a cross-modal extractor for both video and query representation

 As a re-ranking module specifically used for queries that have negative
cues automatically detected.

730 A man is holding a knife in a non-kitchen location

Model | CLIP-bn/ | Rerank Query 730 Using CLIP-bnl as a feature

X X 0.070 :
extractor can improve the

LAFF X v 0.069 |
v x oooal Performance of negation query.

16 e



Retrospective experiments

 Whether text augmentation is useful ?
Automatically appending noun / adjective based keywords at the end of each query
728 Two adults are seated in a flying paraglider in the air

T“ :
J . ~

3 )
shot10981_84_0 shot08833_12_0 shot10528_57_0 shot10981_80_0 shot08262_9_0 shot16662 69 0 shot10981 122 0 shot14909 17 0 shot14909 4 0 shot08262 11 0

Top-ranked list of 10 videos

Two adults are seated in a flying paraglider in the air two adults

shot10981_80_0 shot08262_9_0 shot10048_687_0 shot08262_11_0 shot08833_14_0

shot17124_29_0 shot17124_33_0 shot10981_84_0

Yes, but only work on the query with a simple sentence structure.
17



Retrospective experiments

Whether text augmentation is useful ?
Automatically appending noun / adjective based keywords at the end of each query

726 Two teams playlng a game where one team have their players wearing white t-shirts.

) | 2 _
shot16629_175_0 shot16629_162_0 shot11492_10_0 shot11855_64_0 shot12992_134_0 shot11123_104_0 shot11123_107_0 shot11492_39_0 shot16629_163_0 shot07802_127_0

Top-ranked list of 10 videos

Two teams playing a game where one team have their players wearing white t-shirts. white t-shirts.

[ e : - ! [ t - AT YL A
Shot12992 134_ O shot11652_72_0 shot16869_ 15 0 shot11492_7_0 shot11492_10_0 shot11492_48_0 shot11492_5_0 shot11492_39_0 shot11492_19_0

The context of query with a complex sentence structure is ignored.
18




Conclusions

> LAFF is an effective feature fusion block for video retrieval.

»BNL makes some favorable effects on training a negation-aware
video retrieval model, but negation-aware is still hard.

» The query understanding is essential.

https.//github.com/ruc-aimc-lab/laff
https.//github.com/ruc-aimc-lab/nT2VR

caz@ruc.edu.cn
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