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Problem Statement

* Spatio-temporal Action Detection

* Challenges
e Large variations in scale (few pixels to recognize from)

* Wide range of activity durations (e.g. talking, opening door, person laptop
interaction)

* Indoor and outdoor environments with clutter, occlusion, etc
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* Two-stage, modular
* Real-time system
e Re-trained and verified by multiple teams
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Data & Annotations

Histogram of activity lengths
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* From Kitware annotations

[1]: https://mevadata.org
[2]: Oh, Sangmin, et al. "A large-scale benchmark dataset for event recognition in surveillance video." CVPR 2011. IEEE, 2011.



Average duration per activity
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Proposal Generation
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* Proposals = spatio-temporal cuboid of regions in the video where
activities are potentially occurring

(Xminr yminr Xmaxr ymaxt fstartr fend)




Training-time Proposals using
Hierarchical Clustering

* Object Detection using Mask-RCNN|[1] on every n-th frame
* Only keep person and vehicle detections

* Represent objects by a 3D feature vector (x, v, f)
* (x,y) : Center of the object bounding box
* f: Frame number

* Hierarchical clustering of these 3D features
* Split the resulting linkage tree at various levels to create k clusters
* Generate proposals as the max cuboid of all objects in a cluster

(Xminr ymint Xmax: ymaXI fstart' fend)

[1]: He, Kaiming, et al. "Mask R-CNN." Proceedings of the IEEE international conference on computer vision. 2017.
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Proposal Jittering and Refinement

e Jitter proposals temporally to obtain dense proposals
* Higher Recall
* Data augmentation

* Next, each proposal is labeled as either:
* non-action class (background): Easy/Hard Negatives
* action classes (potentially multiple activities)

* Action classes determined based on spatio-temporal loU overlap with
ground truth annotations



Data-driven proposals during inference

Depth First

Search

RGB Frames Output proposals

* At testing time, the system uses a data-driven proposal mechanism
* The proposal model uses ideas from 3D semantic segmentation

* Given a XYT volume, predict if each voxel is part of an activity



Data-driven proposal network

Depth First

Search

RGB Frames Output proposals

* 3D U-Net architecture using 13D
* Loss: Combination of BCE loss and Tversky Loss [1]
* Trained on a fixed number of strided uncropped frames

* Final proposals are produced by taking axis-alighed bounding boxes of
connected components

[1]: S. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Tversky loss function for image segmentation using 3d fully convolutional deep
networks,” in International workshop on machine learning in medical imaging. Springer, 2017






Action Classification
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Model and Input

* 13D backbone

* Input modality: Optical Flow

* Input to the network: 64 x 224 x 224

* 64 frames sampled uniformly across temporal span of each proposal

* Videos are resized so that the smallest dim = 256
 Random 224 x 224 crop during training
* Horizontal flip (except for vehicle right/left/u turn)






Loss function

* Multi-label Classification (BCE Loss)

« Each proposal gets multiple labels (all overlapping GT activities)

C = xp(—3n) 1+ exp(—#:)

| 1 1 Ny '_-*i P Youu - >
03, y) = ——Z (]z log ;—————~ + (1 —:)log eXp(—9:) ) ye R,y e {01}



Post-processing



RGB Frames

Proposal Action

. L Postprocessin
Generation Classification P &

Output

Optical
Flow




Post-processing

 Threshold for each action class
e 3D NMS
* Camera conditional Filtering

* Object conditional Filtering



Threshold + 3D-NMS

* For each proposal, we get a probability value of presence of each
action class

* We set a low threshold to remove noisy predictions

* Our proposal generation method creates many highly-overlapping
action proposals, many of which belonging to the same class

* Apply 3D-NMS to prune overlapping cuboids

* Applied to each class separately



Camera Conditional Filtering

* We filter resulting predictions in additional post-processing based on
the location of the camera, i.e. indoor vs outdoor

* If the camera is located indoors, we suppress all vehicle activities.
* This could fail in certain cases, e.g. indoor parking lots

 Camera location is available at inference time in the provided
metadata

* To be more flexible, we also perform object conditional filtering on
predictions for each proposal



Object Conditional Filtering

* We filter predictions during post-processing based on consistency
with object detections

* The set of activities is split into person-only, vehicle-only and person-
vehicle activities

* Based on all the objects detected within the cuboid, we filter activity
predictions by ensuring the following:
* Person-only activities: have at-least one person detection
* Vehicle-only activities: have at-least one vehicle detection
* Person-Vehicle activities: have at least one person and vehicle detection



Results









T (W

B

A2







Rank

ActEV SRL Leaderboard

Team Name
BUPT-MCPRL

UMD

mlve_hdu
WasedaMeiseiSoftbank
TokyoTech_AIST

M4D_team

Submission
ID

27305
27264
27288
27279
27309

27268

Submission
Date

2022-11-02
2022-06-16
2022-10-28
2022-10-24
2022-11-23

2022-10-18

System Name

MCPRL_SO

UMD-JHU
mlvc_hdu_baseline
WasedaMeiseiSoftbank_P
p-merge

baseline

AOD mean
PMiss @0.1rfa

0.6309
0.8131
0.9921
0.9961

0.9965

AOD mean
nMODE @0.1rfa

0.0538
0.1620
0.0303
0.1080

0.1827

AOD mean
nAUDC @0.2rfa

0.6705
0.8300
0.9922
0.9964

0.9961

AD mean
PMiss @0.1rfa

0.5805
0.7789
0.9728
0.9829
0.9824

0.9823

AD mean
nAUDC
@0.2rfa

0.6231
0.7995
0.9732
0.9850
0.9830

0.9819



Thank you!



