# Waseda\_Meisei\_SoftBank at TRECVID 2022 Video to Text Description

Hiroki Takushima (presenter)

SoftBank Corporation

Kazuya Ueki

Meisei University, Waseda University

Takayuki Hori

SoftBank Corporation, Waseda University

Yuma Suzuki, Hideaki Okamoto

SoftBank Corporation







- 1. Overview
- 2. Methods
- 3. Experiments
- 4. Results
- 5. Discussion
- 6. Conclusion

# **Overview**

# Overview (Task)

- VTT (Video to Text Description)
  - Generating sentences from videos using natural language
  - Use temporal/spatial video features and audio



GenerateText: A man is playing frisbee a dog.

# Overview (Competition)

#### TRECVID VTT 2022 regulation

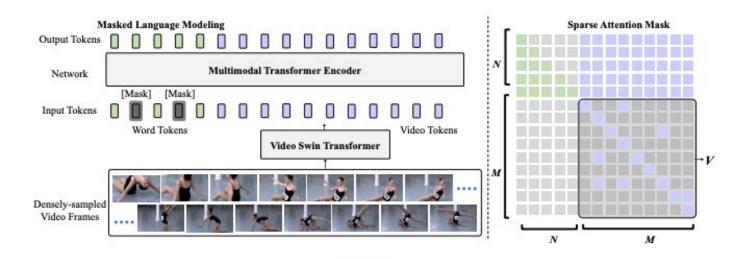
- Generate English caption for 3~10 sec videos (and generate confidence score)
- desire to consist of 4 content
  - Who : who is in the video? (people, animals, objects)
  - What : what are the objects and entities doing? (action or state)
  - Where : where was the video shot? (geographical or architectural location)
  - When: when was the video taken? (time of day, season, etc.)
- Max 4 submissions each teams
- select primary in all submissions

# Methods

### **Strategy**

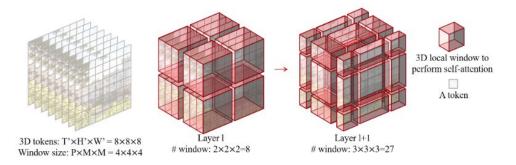
#### Our Strategy

- Reduce redundancies in videos
- TRECVID VTT 2022 Dataset audio is multilingual, so only video features are used
- Use a pre-trained model because the training data is small




# Use SwinBERT, a SOTA model of VTT

[1]Lin, Kevin and Li, Linjie and Lin, Chung-Ching and Ahmed, Faisal and Gan, Zhe and Liu, Zicheng and Lu, Yumao and Wang, Lijuan SwinBERT: End-to-End Transformers with Sparse Attention for Video Captioning(CVPR2022)


#### SwinBERT

- End2End Video captioning model
  - **■** Encoder : Video Swin Transformer
  - Decoder : Multimodal Transformer Encoder



#### • Encoder : Video Swin Transformer

- Visual feature extractor based on Transformer
- Patch-marge: Split into N x N with patch like ViT
- **SW-MSA**: Recognition between adjacent windows is possible by alternating windows
- →Faster than sliding and still as accurate
- RelativePositionBias: Adjust attention strength by relative position of patch



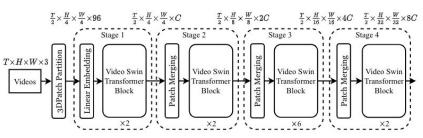
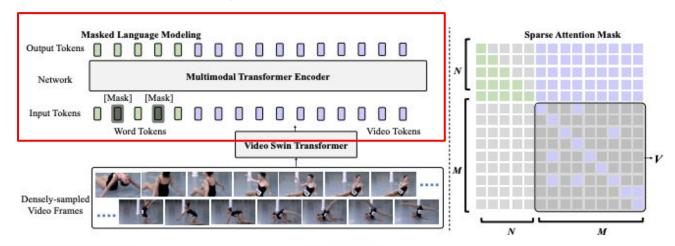
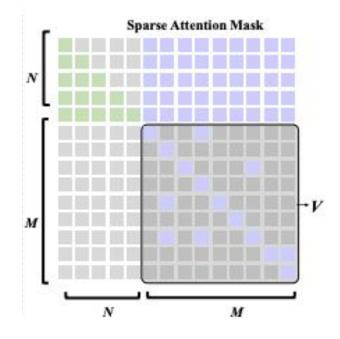





Figure 1: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T).

- Decoder : Multimodal Transformer Encoder
  - Generate natural language description from textual and visual modality inputs
  - Training: Masked language model
  - o Inference: Perform Seq2Seq generation



- Decoder : Multimodal Transformer Encoder
  - Learnable sparse Attention MASK
    - text→text: can access only past tokes
    - text→visual: can access all
    - visual→text:can't access
    - visual→visual:train attention mask
      - →reduce redundancies



# **Experiments**

#### **Datesets**

- Dataset: V3C1
  - Use V3C1 which consist of Vimeo Creative Commons Collection (V3C)
  - Test data
    - 2008 videos (+300 progress test)
    - 3~10sec per video
    - 5 captions per video
  - Train / Develop data
    - TRECVID data from 2016 years to 2021 years (10862 videos)
    - 2~5 captions per video

### **Experiments**

#### • Pretraining:

- Datasets : VATEX Dataset
- AdamW optimizer : warmup 10% steps followed by linear decay
- Use max 32 frames

#### Finetuning:

- Datasets: V3C1 Dataset
- Don't train leanable attention mask

#### **Evaluation Metrics**

- Metrics
  - Automatic metrics
    - METEOR, BLEU, CIDEr, CIDEr-D, SPICE
  - Direct Assessment(DA)
    - Evaluate primary runfile only by cloud worker →TBD
  - Semantic similarity metric(STS)
    - Measuring the semantic relevance of features →Add Appendix

#### Results |

- Submit runfiles Fintunig TRECVID-VTT
- For primary, check the generated sentences and select

| Runfile | CIDER | CIDER-D | BLEU  | METEOR | SPICE |
|---------|-------|---------|-------|--------|-------|
| 1       | 0.415 | 0.178   | 0.033 | 0.260  | 0.077 |
| 2       | 0.348 | 0.141   | 0.026 | 0.252  | 0.084 |
| 3       | 0.350 | 0.150   | 0.028 | 0.260  | 0.087 |
| 4       | 0.388 | 0.182   | 0.037 | 0.286  | 0.100 |

• Max 3rd, Average rank is 4.2

|                      | CIDER | CIDER-D | BLEU | METEOR | SPICE |
|----------------------|-------|---------|------|--------|-------|
| ELT_01               | 4th   | 2nd     | 4th  | 5th    | 3rd   |
| VIDION               | 3rd   | 6th     | 6th  | 6th    | 6th   |
| kslab                | 2nd   | 3rd     | 2nd  | 4th    | 5th   |
| MLVC_HDU             | 6th   | 5th     | 3rd  | 2nd    | 2nd   |
| RUCAIM3-Tencent      | 1st   | 1st     | 1st  | 1st    | 1st   |
| WasedaMeiseiSoftbank | 5th   | 4th     | 5th  | 3rd    | 4th   |

\*\*Best runfile results

### **Discussion**

# **Output samples**



| GT1: | A person surfing on the frothy white waves in the ocean on a sunny day.                     |
|------|---------------------------------------------------------------------------------------------|
| GT2: | A man surfs in the ocean going up and down in the waves with his surfboard on a cloudy day. |
| GT3: | A surfer is jumping over waves on a cloudy day                                              |
| GT4: | A man is water surfing on a large wave in the daytime.                                      |
| GT5: | A guy is surfing in big and high waves in the sea or ocean in the daytime.                  |

| Run1: | a man is surfing on a wave and then falls off.                     |
|-------|--------------------------------------------------------------------|
| Run2: | a surfer rides a surfboard surfs through the water on a sunny day. |
| Run3: | a man on a surfboard rides a wave and jumps off his head.          |
| Run4: | a man rides a surf board through a ocean on a sunny day.           |

# Output samples



| G | T1: | A group of people are on top of a windy mountain looking down on a city as one of the men is showing them something.                       |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| G | T2: | One man out of four people standing on top of a mountain and watching down is explaining something to them using his hands in the daytime. |
| G | T3: | A group of people sight seeing on a mountain top look over a town.                                                                         |
| G | T4: | Three men and a long haired woman are standing on a hill overlooking a settlement in the valley below them on a windy day.                 |
| G | T5: | Four white people standing on a hill overlooking a small town situated in a valley on an overcast day.                                     |

| Run1: | a group of people are standing on a cliff and one of them is standing on the ground |
|-------|-------------------------------------------------------------------------------------|
| Run2: | a young woman with a black shirt and a black shirt and a black                      |
| Run3: | a man in a white shirt and a woman are taking a selfie on a rocky mountain          |
| Run4: | a young woman walks towards a man on a rocky day as a young woman walks up to       |

# V3C1 train data samples

```
Users > takushima > workspace > trecvid > ≡ vtt_ground_truth.txt
       1 a man sings in a car
        1 man shakes his body in a car at daytime
       2 in the daytime, two sportsmen walk in the sports field, while an other man moves on the wheel
        2 on a baseball field a person in dark clothes is moving from right to left without walking
        3 a basketball player wearing number 30 shirt is scoring a goal on a basketball court against a red wearing team
        3 basketball player scoring a three pointer on a basketball field
        4 people are going downstairs on a stage
       4 several people walking down a staircase on a stage
        5 2 women shake their bottoms
       5 two women try to dance in a room.
      6 a group of people riding a free fall tower
       6 a roller coaster moves upwards at daytime
       7 a man is scared by a picture of a boy on a mirror in a bathroom
   7 white male taking a selfie in a bathroom mirror
       8 2 men on a stage hug and walk away
       8 two young man are standing on a stage embracing each other and one claps the other one's ass.
       9 3 men are hugging each other
       9 a man performs in movies
        10 a man speaks into a microphone indoors
       10 white man with glasses giving an interview in the interview area
  21 11 a basketball player walks through a group of people
       11 a big man in yellow cloths passes by some chairs in a large hall.
  23 12 in the daytime, a cat walks at home and meows and another cat approaches to it
       12 a little cat is following the camera and meows to it
   25 13 2 men train in a gym
       13 2 men run in a gym
```

w/o period

number

human

color info

: Variations of sentences with and without periods

: Numeric and alphanumeric variations

: Many descriptions of what you are wearing

: Many descriptions of color infomation

#### **Discussion**

w/ or w/o period ←critical to our approach

VATEX dataset has periods

V3C1 dataset with and without periods

- → Period output becomes ambiguous in Finetuning for pre-trained in VATEX
- → Impression that the model does not know the end of the sentence

#### Difference in number description

V3C1 Train data has both alphanumeric and numeric descriptions

V3C1 Test data has description only in alphanumeric characters

→ Deviation occurs in the output

#### **Discussion**

#### Descriptions about people

V3C1 data has many descriptions of information that people wear

The point is whether this is described

#### Description about color

V3C1 data has many descriptions about colors

In particular, there are many descriptions about what the person above is wearing

# Conclusion

#### Conclusion

- SwinBERT reduces redundancy for videos and can effectively generate even less data by pre-training model
- Finetuning SwinBERT with V3C1 dataset
- From the generated results, we found the features and issues of the V3C1 dataset
- As a result, the highest ranking was 3rd, and the average rank was 4.2.

# **Appendix**

#### **Datesets**

- Dataset: V3C1
  - Use V3C1 which consist of Vimeo Creative Commons Collection (V3C)
  - Test data
    - 2008 videos (+300 progress test)
    - 3~10sec per video
    - 5 captions per video
  - Train / Develop data
    - TRECVID data from 2016 years to 2021 years (10862 videos)
    - 2~5 captions per video
    - data details
      - Videos with IDs ~6475 videos from Twitter Vine.
      - Videos with IDs 6476 7485 are from our Flickr dataset.
      - Videos with IDs 7486~ are from the V3C dataset.
      - Videos with IDs from 1 to 3528 have between 2 to 5 captions.
      - Videos from 3529 onwards have 5 captions each.

#### • CIDER

|                      | Run1  | Run2  | Run3  | Run4  | Best  | Rank |
|----------------------|-------|-------|-------|-------|-------|------|
| ELT_01               | 0.507 | 0.103 | 0.243 | 0.234 | 0.507 | 4th  |
| VIDION               | 0.595 | 0.589 | 0.607 | 0.611 | 0.611 | 3rd  |
| kslab                | 0.619 | 0.163 | 0.510 | 0.141 | 0.619 | 2nd  |
| MLVC_HDU             | 0.361 | 0.346 | 0.361 | 0.361 | 0.361 | 6th  |
| RUCAIM3-Tencent      | 0.940 | 0.936 | 0.936 | 0.942 | 0.942 | 1st  |
| WasedaMeiseiSoftbank | 0.415 | 0.348 | 0.350 | 0.388 | 0.415 | 5th  |

#### • CIDER-D

|                      | Run1  | Run2  | Run3  | Run4  | Best  | Rank |
|----------------------|-------|-------|-------|-------|-------|------|
| ELT_01               | 0.226 | 0.045 | 0.076 | 0.105 | 0.226 | 2nd  |
| VIDION               | 0.098 | 0.099 | 0.108 | 0.113 | 0.113 | 6th  |
| kslab                | 0.194 | 0.048 | 0.110 | 0.027 | 0.194 | 3rd  |
| MLVC_HDU             | 0.179 | 0.166 | 0.179 | 0.179 | 0.179 | 5th  |
| RUCAIM3-Tencent      | 0.594 | 0.575 | 0.602 | 0.592 | 0.602 | 1st  |
| WasedaMeiseiSoftbank | 0.178 | 0.141 | 0.150 | 0.182 | 0.182 | 4th  |

#### • BLEU

|                      | Run1   | Run2   | Run3   | Run4   | Best   | Rank |
|----------------------|--------|--------|--------|--------|--------|------|
| ELT_01               | 0.069  | 0.012  | 0.014  | 0.034  | 0.069  | 4ht  |
| VIDION               | 0.024  | 0.025  | 0.029  | 0.030  | 0.030  | 6th  |
| kslab                | 0.081  | 0.0260 | 0.047  | 0.011  | 0.081  | 2nd  |
| MLVC_HDU             | 0.0716 | 0.062  | 0.0716 | 0.0716 | 0.0716 | 3rd  |
| RUCAIM3-Tencent      | 0.1350 | 0.131  | 0.1352 | 0.1353 | 0.1353 | 1st  |
| WasedaMeiseiSoftbank | 0.033  | 0.0263 | 0.028  | 0.037  | 0.037  | 5th  |

#### METEOR

|                      | Run1   | Run2  | Run3   | Run4  | Best  | Rank |
|----------------------|--------|-------|--------|-------|-------|------|
| ELT_01               | 0.248  | 0.178 | 0.169  | 0.194 | 0.248 | 5th  |
| VIDION               | 0.212  | 0.211 | 0.220  | 0.221 | 0.221 | 6th  |
| kslab                | 0.281  | 0.204 | 0.226  | 0.170 | 0.281 | 4th  |
| MLVC_HDU             | 0.289  | 0.280 | 0.289  | 0.289 | 0.289 | 2nd  |
| RUCAIM3-Tencent      | 0.412  | 0.409 | 0.414  | 0.413 | 0.414 | 1st  |
| WasedaMeiseiSoftbank | 0.2604 | 0.252 | 0.2603 | 0.286 | 0.286 | 3rd  |

#### • SPICE

|                      | Run1  | Run2  | Run3  | Run4  | Best  | Rank |
|----------------------|-------|-------|-------|-------|-------|------|
| ELT_01               | 0.102 | 0.043 | 0.062 | 0.064 | 0.102 | 3rd  |
| VIDION               | 0.073 | 0.073 | 0.077 | 0.077 | 0.077 | 6th  |
| kslab                | 0.097 | 0.049 | 0.071 | 0.036 | 0.097 | 5th  |
| MLVC_HDU             | 0.107 | 0.098 | 0.107 | 0.107 | 0.107 | 2nd  |
| RUCAIM3-Tencent      | 0.182 | 0.180 | 0.184 | 0.183 | 0.184 | 1st  |
| WasedaMeiseiSoftbank | 0.077 | 0.084 | 0.087 | 0.100 | 0.100 | 4th  |

STS(Semantic smilarity metrics):Run1

|                      | TXT1   | TXT2   | ТХТ3   | TXT4   | TXT5   |
|----------------------|--------|--------|--------|--------|--------|
| ELT_01               | 0.4211 | 0.4189 | 0.4199 | 0.4191 | 0.4151 |
| VIDION               | 0.3966 | 0.3897 | 0.3938 | 0.3908 | 0.3902 |
| kslab                | 0.4194 | 0.4126 | 0.4126 | 0.4137 | 0.4177 |
| MLVC_HDU             | 0.4176 | 0.3949 | 0.3928 | 0.3988 | 0.4188 |
| RUCAIM3-Tencent      | 0.5380 | 0.5140 | 0.5175 | 0.5116 | 0.5349 |
| WasedaMeiseiSoftbank | 0.3563 | 0.3658 | 0.3669 | 0.3654 | 0.3564 |

• STS (Semantic smilarity metrics): Run2

|                      | TXT1   | TXT2   | TXT3   | TXT4   | ТХТ5   |
|----------------------|--------|--------|--------|--------|--------|
| ELT_01               | 0.2357 | 0.2401 | 0.2302 | 0.2378 | 0.2386 |
| VIDION               | 0.3984 | 0.3867 | 0.3927 | 0.3930 | 0.3888 |
| kslab                | 0.2705 | 0.2616 | 0.2603 | 0.2648 | 0.2703 |
| MLVC_HDU             | 0.4087 | 0.3864 | 0.3822 | 0.3868 | 0.4061 |
| RUCAIM3-Tencent      | 0.5327 | 0.5121 | 0.5102 | 0.5100 | 0.5332 |
| WasedaMeiseiSoftbank | 0.3849 | 0.3755 | 0.3616 | 0.3715 | 0.3843 |

• STS(Semantic smilarity metrics):Run3

|                      | TXT1   | TXT2   | ТХТ3   | TXT4   | TXT5   |
|----------------------|--------|--------|--------|--------|--------|
| ELT_01               | 0.3570 | 0.3413 | 0.3351 | 0.3361 | 0.3627 |
| VIDION               | 0.4064 | 0.3947 | 0.3996 | 0.3985 | 0.3954 |
| kslab                | 0.3690 | 0.3641 | 0.3629 | 0.3602 | 0.3688 |
| MLVC_HDU             | 0.4176 | 0.3949 | 0.3928 | 0.3988 | 0.4188 |
| RUCAIM3-Tencent      | 0.5386 | 0.5154 | 0.5151 | 0.5147 | 0.5379 |
| WasedaMeiseiSoftbank | 0.3881 | 0.3745 | 0.3689 | 0.3698 | 0.3856 |

• STS(Semantic smilarity metrics):Run4

|                      | TXT1   | TXT2   | TXT3   | TXT4   | TXT5   |
|----------------------|--------|--------|--------|--------|--------|
| ELT_01               | 0.3083 | 0.3034 | 0.2994 | 0.3034 | 0.3073 |
| VIDION               | 0.4061 | 0.3951 | 0.3998 | 0.3984 | 0.3952 |
| kslab                | 0.2535 | 0.2504 | 0.2460 | 0.2456 | 0.2539 |
| MLVC_HDU             | 0.4176 | 0.3949 | 0.3928 | 0.3988 | 0.4188 |
| RUCAIM3-Tencent      | 0.5351 | 0.5146 | 0.5131 | 0.5125 | 0.5333 |
| WasedaMeiseiSoftbank | 0.4148 | 0.4094 | 0.4023 | 0.4035 | 0.4184 |