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• Measure how well an automatic system can describe a video in
natural language.

• Measure how well an automatic system can match high-level
textual descriptions to low-level computer vision features.

• Transfer successful image captioning technology to the video
domain.

• Real world applications
• Video summarization
• Supporting search and browsing
• Accessibility - video description to the blind
• Video event prediction

Goals and Motivation



Description 
Generation System

An orange Car is racing on the road.

Description Generation:
Automatically generate a text 
description for a given video.

Robustness Subtask:
Generate text descriptions after 
introducing noise in 
audio/visual channels.

System Task

**All images and video clips in this presentation  are under Creative Common license



• VTT tasks from 2016 to 2019 used the Twitter Vines dataset.
• Videos were ~6 sec long
• Quality control issues
• Links distributed instead of videos, leading to problem of removed links.

• Flickr videos are added in 2019.
• Dataset from 2020 onwards: V3C

• The Vimeo Creative Commons Collection (V3C) is divided into 3 partitions.
• Total duration: 3800+ hours. 
• V3C1 duration: 1000+ hours. Divided into more than 1 M segments. Only segments 

between 3 to 15 sec selected for this task.
• Videos distributed directly to participants.

Test Dataset



• Manual selection of videos.
• Watched 8000 videos.
• Selected 2000 videos for annotation.
• Subset of 300 videos were selected in 2021 to measure system progress over 3 years.

• Selection criteria mainly focused on diversity in videos. 
• The V3C dataset removes some previous concerns:

• Videos with multiple, unrelated segments that are not coherent.
• Offensive videos. 

Test Dataset



• A total of 5 assessors annotated the videos.
• Each video was annotated 5 times.
• Assessors were provided with training & annotation guidelines by NIST.
• For each video, assessors were asked to combine 4 facets if applicable:

• Who is the video showing (objects, persons, animals, …etc) ?
• What are the objects and beings doing (actions, states, events, …etc)?
• Where (locale, site, place, geographic, ...etc) ?
• When (time of day, season, ...etc) ?

• Their work was monitored, and feedback provided.
• NIST personnel were available for any questions or confusion.
• Our annotation process differentiates our dataset from other datasets.

• Human annotators are hired & trained in-house (no crowd workers)
• Annotators tend to provide more details

Annotation Process



Annotation – Observations

Annotator Avg. Length # Videos

1 20.64 2000

2 20.48 2000

3 28.86 2000

4 29.38 2000

5 23.43 2000

Q1 Avg Score: 2.22 (Scale of 5)

Q2 Avg Score: 2.52 (Scale of 3)

Correlation between difficulty scores: -0.53

• Additional questions:

1                  2                3               4                  5

1                                2                             3  

• Average sentence length for 
each assessor:

Avg. sentence length: 24.56 words



Teams Organization

KSLAB Nagaoka University of Technology
MLVC_HDU Hangzhou Dianzi University
RUC_AIM3 Renmin University of China

WasedaMeiseiSoftbank Waseda University, Meisei University, SoftBank Corporation
BUPT_MCPRL Beijing University of Posts and Telecommunications

• 5 teams participated with 25 runs
• 2 teams joined the robustness sub-task

Participants



• Up to 4 runs per team
• Metrics used for evaluation:

• CIDEr (Consensus-based Image Description Evaluation)
• SPICE (Semantic Propositional Image Caption Evaluation)
• METEOR (Metric for Evaluation of Translation with Explicit Ordering)
• BLEU (BiLingual Evaluation Understudy)
• STS (Semantic Textual Similarity)
• DA (Direct Assessment), which is a crowdsourced rating of captions

using Amazon Mechanical Turk (AMT)

Runs & Metrics



Run Types

'I’: Only image 
captioning datasets

'V': Only video 
captioning datasets

'B': Both image and 
video 

captioning datasets

‘V’: Visual 
features only

‘A’: Both audio 
and visual 
features

Training Data Types:

Features Used:



1 2

3 4

Submissions - Run Types

• 5 runs

‘VV’ (Video Data/Visual Feats)

• 2 runs

‘IV’ (Image Data/Visual Feats)

• 16 runs

‘BV’ (I+V Data/Visual Feats)

• 2 runs

‘IA’ (Image Data/V+A Feats)
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Correlation of Automated Metrics – Main Task

CIDER CIDER-D SPICE METEOR BLEU STS

CIDER 1 0.931 0.877 0.886 0.912 0.959

CIDER-D 1 0.971 0.966 0.916 0.959

SPICE 1 0.989 0.876 0.963

METEOR 1 0.923 0.971

BLEU 1 0.925

STS 1



Correlation of Automated Metrics – Robustness Task

CIDER CIDER-D SPICE METEOR BLEU STS

CIDER 1 0.963 0.631 0.595 0.456 0.007

CIDER-D 1 0.771 0.74 0.277 0.236

SPICE 1 0.939 -0.256 0.769

METEOR 1 -0.08 0.745

BLEU 1 -0.693

STS 1



• Teams were asked to provide confidence scores for the generated 
sentences.

Confidence vs Score
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• DA uses crowdsourcing to evaluate how well a caption 
describes a video.

• Human evaluators rate captions on a scale of 0 to 100.
• DA conducted on only primary runs for each team.
• The DA score is reported as follows:

• Raw score is the average score for each run over all videos. It ranges between 0 and 
100.

• Z score is standardized per individual AMT worker’s mean and standard deviation 
score. The average Z score is then reported for each run. 

Direct Assessment



DA Results - Raw
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DA Results - Z
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DA Result - Significance

• Green squares 
indicate a significant 
“win” for the row over 
the column.   
• Amongst systems, 

RUC_AIM3 and 
BUPT_MCPRL leads 
the others.
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Correlation (DA , automatic metrics)

BLEU METEOR CIDER CIDER-D SPICE STS

DA 0.89 0.82 0.98 0.87 0.81 0.94

**Based only on the primary run by each team



Progress subtask - BLEU Results
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Progress subtask - CIDER Results
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Progress subtask - CIDER-D Results
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Progress subtask - SPICE Results
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Progress subtask - STS Results

0

0.1

0.2

0.3

0.4

0.5

0.6

RUCAIM
3-Tencent

MLV
C_HDU

ELT_
01

ksl
ab

Wasse
daM

eiss
eiSo

ftb
ank

VIDIO
N

MMCUniAugsb
urg

RUCMM UEC

BUPT_MCPRL

2021 runs
2022 runs
2023 runs



DA Results - Raw
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Progress subtask - DA Results - Z
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Progress subtask - DA Significant Diff. Results

Ø Human-B
Ø Human-C
Ø Human-E
Ø Human-D

Ø BUPT_MCPRL-23
Ø RUC_AIM3-23
Ø WasedaMeiseSoftbank-23
Ø RUCAIM_Tencent-22

Ø RUC-AIM3-21
Ø RUCMM-21
Ø Kslab-NUT-22
Ø VIDION-CMU-22
Ø Kslab-NUT-23
Ø ELT-22
Ø WasedaMeiseSoftbank-22

Ø MMCuniAugsburg-21
Ø MLVC-HDU-23
Ø MLVC-HDU-22

Ø Kslab-21 Ø UEC-21

1

4

2 3

5 6



Examples (GT vs Submissions)

GT:
1- Closeup video of a white male taking aim with a rifle.
2- A man's eye can be seen as he looks at something off camera, then 
raises a rifle with a scope mounted and aims at what he was looking at.
3- A middle aged man is readying himself to aim his gun toward 
something.
4- Closeup of the eyes of a white man raising a rifle to his eyes and 
taking aim.
5- A Caucasian man looks and then lifts his rifle to shoot.

Submissions:
1- a close up of a man’s eyes as he looks through a scope
2- A close up of a man looking into the camera
3- a person is making faces
4- a man with a mustache and mustache is talking to the camera 
in a room with green walls
5- A man is looking into the camera.



Examples (GT vs Submissions)
GT:
Camels are walking in the desert followed by a video of a vehicle wheel going down a road.
During the day a number of camels walk in the desert and then the video shows a car driving down a road in an arid climate.
On an open desert space, several camels can be seen walking across a paved road just before a vehicle approaches.
In a wide flat desert area a vehicle drives past wild dromedary camels, which move away from the road as the vehicle approaches.
A group of camels are walking in the desert followed by a left front wheel of a car coming into view.

Submissions:
- camels are walking in a desert on a sunny day
- A camel walking in the desert
- a camel is seen running on the road on a sunny 
day
- a group of camels are walking on a dirt road in 
the desert on a sunny day
- A camel is walking in a desert on a sunny day.



• This was the first year using the V3C3 test data (following two 
years of V3C2 and 1 year of V3C1).

• Participation in the task is stable.

• Few teams used audio features.

• 3rd year for the progress subtask (still needed?). 

• High correlation between all automatic metrics.

• First year to pilot robustness sub-task

Conclusion



Thank you!


