Robust Scene Categorization by Learning Image Statistics in Context for BBC rushes

Jan van Gemert, Jan-Mark Geusebroek, Cees Snoek, Dennis Koelma, Cor Veenman, Frank Seinstra, Marcel Worring and Arnold Smeulders

Overview

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Visual Concepts by Scene Recognition

How to

recognize an

airplane?

Context!

Use Proto-Concepts to Describe Context

Slide 2

Robust Scene
Categorization by
Learning Image
Statistics in Context

SVM: link Context to Concepts

Learn Models on News data, evaluate on BBC rushes

Low Level Features

Color Invariance

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Slide 3

Natural Image Statistics

There are more non-edges than edges

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Distribution of Edge responses: Integrated Weibull

$$\frac{\gamma}{2\gamma^{1/\gamma}\Gamma(\frac{1}{\gamma})}\exp\left(-1\frac{1}{\gamma}\left|\frac{r-\mu}{\beta}\right|^{\gamma}\right)$$

Slide 4

Proto-Concepts

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Robust Scene
Categorization by
Learning Image
Statistics in Context

Building (321)
 Car (192),
 Charts (52)
 Crowd (270)
 Desert (82)
 Fire (67)
Flag_USA (98)
 Maps (44)
Mountain (41)

Road (143) Sky (291) Smoke (64) Snow (24),

Vegetation (242) Water (108)

In brackets: nr. Annotations at least 20 frames

Region Detection

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Slide 6

Contextures

Contexture: Occurrence Histogram of Proto-Concepts

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Global (Accumulate)

Local (Arg Max)

Slide 7

Robust Scene
Categorization by
Learning Image
Statistics in Context

Accumulate

Arg Max

Learning Concepts in Video

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Robust Scene
Categorization by
Learning Image
Statistics in Context

Slide 8

Image to Shot: sample every second.

Use SVM to link Contextures to 101 Concepts

Performance on TrecVid Testset

BBC Rushes

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Robust Scene
Categorization by
Learning Image
Statistics in Context

Slide 9

 Evaluate the SVM-models trained on TRECVID data on the BBC rushes

• 25 'survive':

aircraft, bird, boat, building, car, charts, cloud, crowd, face, female, food, government building, grass, meeting, mountain, outdoor, overlayed text, sky, smoke, tower, tree, urban, vegetation, vehicle, waterscape

BBC rushes Screenshots (I)

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Slide 10

Robust Scene
Categorization by
Learning Image
Statistics in Context

Tower

BBC rushes Screenshots (II)

Introduction

Visual Features

Contextures

Evaluation

Conclusions

Slide 11

Robust Scene
Categorization by
Learning Image
Statistics in Context

Face

Food

Conclusions & Discussion

Introduction

Visual Features

Contextures

Evaluation

Conclusions

- Does a picture say more than a thousand words?
 - According to our Trec results: Not (yet)
- Robust methods provide a rich untapped information source:
 - Re-use of annotations
 - Re-use of Training Models
 - Ideally: train a concept once, apply everywhere

Slide 12

