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ABSTRACT

Our experiments in TRECVID 2005 include participation in the high-level feature extraction and search tasks. In the high-
level feature extraction task, we applied a method of representing semantic concepts as class models on a set of parallel
Self-Organizing Maps (SOMs). We submitted one run, A PicSOM 1, in which we applied a feature selection scheme for each
concept separately. The results showed that the SOM-based class models can be used for representing semantic concepts on
multimodal feature indices and that the proposed method is suitable for detecting video shots with specific semantic content.

In the search task, we submitted a total of seven runs (three automatic, three manual, and one interactive run). Our main
motivation was to study the utilization of parallel multimodal features and class models compared to using only text-based
queries. The overall settings for the runs were as follows:

• F A 1 SOM-F1 7: a baseline automatic run using only ASR/MT output
• F A 2 SOM-F2 3: an automatic run using ASR/MT output, multimodal features, and class models
• F A 2 SOM-F3 5: an automatic run using multimodal features and class models
• M A 1 SOM-M1 6: a baseline manual run using only ASR/MT output
• M A 2 SOM-M2 4: a manual run using ASR/MT output and multimodal features
• M A 2 SOM-M3 2: a manual run using ASR/MT output, multimodal features, and class models
• I A 2 SOM-I 1: an interactive run

Both in the automatic and manual experiments, we observed that the proposed method is able to combine the text query,
multimodal features and class models successfully. In both cases, the overall best results are obtained using all three information
sources with the MAP value being nearly double when compared to text-only search. Our small-scale interactive search
experiments were performed with our prototype retrieval interface supporting only relevance feedback -based retrieval. Still,
the experiments demonstrate that the proposed method can also be used in an interactive setting, where the search is guided
with iterative feedback from the user.

I. INTRODUCTION

In this paper, we describe our experiments with the PicSOM system in TRECVID 2005. We participated in the
high-level feature extraction and automatic, manual, and interactive search tasks. As this is our first participation in
TRECVID, the first objective this year was to implement all the necessary functionality into our PicSOM system,
which has not been previously used for this type of video retrieval, but mainly for still images.

One motivation for the performed experiments was to test our existing method for indexing multimodal hierar-
chical objects and relevance propagation for digital video. Earlier we have applied a similar approach to indexing
and retrieval of web pages [1]. In the high-level feature extraction task, we applied our method of representing
semantic concepts as class models on a set of parallel feature indices. The class models were used for image group
annotation in [2], whereas in the TRECVID context we are interested in shots of the test collection that have the
highest likelihood of being relevant to the given concept. Also, instead of using a fixed set of features, we apply
a manual feature selection scheme separately for each concept. In the three types of search tasks, we wanted to
experiment with combining a text query with a set of multimodal features and both positive and negative class
models in video retrieval.

The rest of the paper is organized as follows. The extension of the PicSOM system for video retrieval and the
used multimodal features are briefly described in Section II. In Section III we discuss extending the use of multiple
SOM indices from representing online queries into modeling semantic concepts. Our experiments for the high-level
feature extraction and search tasks are described in Sections IV and V, respectively, and conclusions are presented
in Section VI.



II. INDEXING VIDEO WITH PICSOM
The PicSOM system [3] is a general framework for research on content-based indexing and retrieval of visual

objects. The system is based on using several complementary Self-Organizing Maps (SOMs) [4], each trained with
separate feature data. The SOM defines an elastic, topology-preserving grid of points that is fitted to the input
space. The distribution of the data vectors over the map forms a two-dimensional discrete probability density. As
a result, the different SOMs impose different similarity relations on the objects. The task of the retrieval system
then becomes to select, weight and combine these similarity relations so that their composite would approximate
the human notion of similarity in the current retrieval task as closely as possible. The parallel SOMs can also be
augmented with other types of additional information and different indices. In this application, a such source of
information is the ASR/MT text output, for which the inverted file provides an effective indexing structure.

Ordinary retrieval usage of the PicSOM system is based on relevance feedback: the user determines the relevance
of all returned objects and marks the ones she considers relevant to the current task, the others are deemed non-
relevant. The SOM units on all maps are awarded positive and negative scores for every relevant and non-relevant
object mapped in them, respectively. The system remembers all responses the user has given since the query was
started in these sparse value fields.

Due to the topology preservation property of the SOM, we are also motivated to spread this relevance information
to the neighboring map units on the SOM grids. Spreading of the response values can be performed by convolving
the sparse value fields with a tapered kernel function. This results in polarization of the entire map surface in areas
of positive and negative cumulative relevance.

By locating a given database object in all SOM indices, we get its relevance scores with respect to the different
features. Then, as the response values of the parallel indices are mutually comparable, we can determine a global
ordering and the overall best candidate objects using simple unweighted linear combination.

A. Indexing hierarchical objects

An extension of the PicSOM system to support general multi-part and multimodal objects having a natural
hierarchy was proposed in [1]. Such object hierarchies can be found e.g. in web pages, e-mail and MMS messages,
and also digital video. The multi-part hierarchy for video shots used for indexing the TRECVID 2005 collection
is illustrated in Fig. 1. The video shot itself is considered as the main or parent object. The keyframes (one or
more) associated with the shot, the audio track, and ASR/MT text are linked as children of the parent object. This
hierarchy could also be extended further, e.g. the image objects could have image segments as subobjects, the
original video is the video shot’s parent, etc. All object modalities may have one or more SOMs or other feature
indices, and thus all objects in the hierarchy may have links to a set of associated feature indices.

In this setting, the relevance of each object in the tree structure can be considered as a property of not only the
object itself, but to some extent also of the other objects in the same structure. With this approach, denoted as
relevance sharing, any relevance assessment or existing annotation can be propagated from the original object to
its parent, children and siblings, depending on the application [1]. For example, if an e-mail message is considered
relevant in a certain query, its attachments will also get increased relevance values. As a result of this relevance
propagation, any e-mail message with similar attachments will then later get a share of that relevance.

In the case of video shot retrieval, both the object of retrieval and the target of the relevance assessments is the
video object1. Therefore, the relevance assessments are first propagated from the parent, i.e. video shot, object to
the children objects. The relevant and non-relevant objects in the hierarchy are then mapped to the corresponding
SOMs and kernel smoothing is performed. Finally, when determining the best-scoring video shots, the relevance
scores are propagated from the subobject indices to their parent objects.

B. Multimodal features

In indexing the video shots of the TRECVID 2005 collection, we used in total four video features, six still image
features, and one audio feature. A separate 256×256-sized SOM was trained for each of these eleven features. For
the ASR/MT output, we used two alternative conceptwise text features based on an inverted file in the high-level
feature extraction task. All these features are briefly described below.

1with the exception of the example images in the search topics of TRECVID 2005
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Fig. 1. The hierarchy of video and multimodal SOMs.

1) Video features: On the video shot level, we used the MPEG-7 [5] Motion Activity descriptor (MA) and
temporal versions of three still image features. The temporal image features are calculated as follows. The video
clip is first divided into five non-overlapping parts with equal lengths. The resulting video clips are called slices.
All the frames of the five slices are then extracted, and each frame is divided into five separate zones: the upper,
the lower, the left hand side, the right hand side and the central zone. A feature vector is calculated separately
for each zone, and then the zone feature vectors are concatenated to form a vector depicting the whole frame. All
the frame feature vectors of a video slice are then averaged to form the feature vector for the slice. Finally the
feature vectors of the five slices are concatenated to form the feature vector of the video clip. Several different
video features can be calculated using this method by varying the feature that is calculated for the zones of the
frames. Average Color (AC), Color Moments (CM) and Texture Neighborhood (TN) features were the three zone
features that were used.

The Average Color feature vector is a three element vector that contains the average RGB values of all the pixels
within the zone. The Color Moments feature is calculated by separating the HSV color channels from the zone.
Then the values of the color channels are treated as probability distributions, and the first three moments (mean,
variance and skewness) are calculated for each distribution. The feature vector contains the three moment values
for the three color channels.

The Texture Neighborhood feature is calculated from the Y (luminance) component of the YIQ color representa-
tion of the zone pixels. The 8-neighborhood of each inner pixel is examined, and a probability estimate is calculated
for the probabilities that the neighbor pixel in each surrounding relative position is brighter than the central pixel.
The feature vector contains these eight probability estimates.

2) Image features: For the keyframe indices we used a set of six standard MPEG-7 [5] descriptors, viz. Color
Layout (CL), Color Structure (CS), Dominant Color (DC), Scalable Color (SC), Edge Histogram (EH), and
Homogeneous Texture (HT). The descriptors were extracted globally from every keyframe in the collection, i.e. no
segmentation or zoning was used. In addition, these descriptors were extracted from the example images of the
search topics. An illustration of a SOM of keyframes trained with the Edge Histogram descriptor is shown in
Figure 2.

3) Audio features: The Mel-scaled cepstral coefficient, or shortly Mel Cepstrum (CE) is the discrete cosine
transform (DCT) applied to the logarithm of the mel-scaled filter bank energies. The number of coefficients taken
is 12, and these are organized as vector. Finally the total power of the signal is appended to the vector giving a



Fig. 2. An example keyframe SOM of 16×16 map units trained with MPEG-7 Edge Histogram descriptor. In the experiments, SOMs of
size 256×256 map units were used.

feature vector of length 13.
4) Text features: Unlike the other features, an inverted file instead of a SOM index was used for the ASR/MT

output. The extension of the PicSOM system for using such indices in parallel with the SOMs was presented in [6].
For the high-level feature extraction task, the text features were constructed by gathering concept-dependent lists

of most informative terms. Let us denote the number of shots in the development set associated with concept c
as Nc and assume that of these shots, nc,t contain the term t in the ASR/MT output. After preprocessing and
stemming, the following measure is applied for term t regarding the concept c:

Sc(t) =
nc,t

Nc
−

nall ,t

Nall
.

For every concept, we record the 10 and 100 most informative terms and use them as alternative text features.

III. MODELING SEMANTIC CONCEPTS

In addition to the relevant and non-relevant object sets during online queries, the sparse value fields can also
be constructed with any other object subsets, such as groups of objects with semantically similar content. Such
modeling of mid-level semantic concepts can be a very useful step in supporting high-level querying on visual data.
As in retrieval, the sign of the impulses depends on the relevance of the concept: positive impulses are used for
relevant concepts, negative impulses for non-relevant concepts. The kernel smoothing step is again useful to spread
the concept information and also to ease visual inspection of large SOMs (see Figure 3 (right) for an example).
Areas occupied by objects of the concept in question are shown with gray shades. In Figure 3 (left), it is visualized
how the original very-high-dimensional pattern space is first projected to feature space, the vectors of which are
then used in training a SOM.
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Fig. 3. Left: Stages in creating a class model from the very-high-dimensional pattern space through the high-dimensional feature space to
the two-dimensional SOM grid. Right: An example class model (concept explosion/fire on the MPEG-7 Color Layout SOM).

These class-conditional distributions or class models can be considered as estimates of the true distributions of the
semantic concepts in question, not on the original feature spaces, but on the discrete two-dimensional grids defined
by the used SOMs. Thereby, instead of modeling probability densities in the high-dimensional feature spaces, we
are essentially performing kernel-based estimation of discrete class densities over the SOM grid. Depending on
the variance of the kernel function, these kernels will overlap and weight vectors close to each other will partially
share each other’s probability mass.

As an example, the most representative objects of a given semantic concept can be obtained by locating the
SOM units, and the objects mapped to these units, that have highest responses on the estimated class distribution.
Combining the responses of multiple features can be performed similarly as in the retrieval stage, after which we
obtain the overall most representative objects of a specific concept regarding all the used features. Taking this
approach with new data we end up with the concept detection method used in our experiments in the high-level
feature extraction task.

Multiple class models can be linearly combined in an application where multiple concepts are relevant or non-
relevant simultaneously. This is the case in the search task where the topic of the search may warrant using one
or more models to represent either positive or negative concepts. Auxiliary class models could also be utilized
in concept detection, especially negative ones, as a high response on a contradictory concept can be helpful in
discarding false positives.

IV. HIGH-LEVEL FEATURE EXTRACTION EXPERIMENTS

For the high-level feature extraction task, a method for estimating the joint distribution of video shot repre-
sentations and semantic concepts is required. For this purpose, we utilize the existing common annotations for
the development set and construct class models for the semantic concepts in the list of high-level features to be
detected, as described in Section III. In these experiments, we do not use any specific detectors or concept-specific
processing, so all ten concepts are detected using the same procedure based only on the ground-truth annotation
for each concept. The other concepts defined in the LSCOM-lite ontology were not utilized, nor any other data.
We submitted one run, A PicSOM 1, for this task.

A. Feature selection

The set of used features was selected for each concept separately. For this purpose, we applied a SFS-type feature
selection scheme, in which we begin with an empty set of features and compute a criterion value for each of the
potential features. If adding the feature with the highest value improves the overall result, the feature is used in the
task and the process is continued. Otherwise we stop the selection process. As the optimization criterion we used
the average precision at 2000 returned items with two-fold cross validation on the development set.

The eleven features with SOM indices described in Section II-B along with the two concept-dependent text
features were always included as potential features. The text features were alternative to each other, so only one of
them could be selected. The conceptwise sets of selected features are listed in Table I (the feature abbreviations are
listed in Section II-B). As can be seen, the selection process typically resulted in 4–7 parallel features. The prisoner



TABLE I
FEATURES USED IN THE HIGH-LEVEL FEATURE EXTRACTION TASK FOR EACH CONCEPT. IN ADDITION, THE ASTERISKS DENOTE

FEATURES USED IN THE SEARCH TASK DY DEFAULT.

high-level feature video image audio text
MA∗ AC∗ CM∗ TN∗ CL∗ CS DC SC EH∗ HT∗ CE 10 100

38: walking/running × × ×
39: explosion/fire × × × ×
40: maps × × × × × × ×
41: flag-us × × × × ×
42: building × × × × × ×
43: waterscape/waterfront × × × × × × ×
44: mountain × × × × × ×
45: prisoner ×
46: sports × × × × × ×
47: car × × × × × × × × ×

concept was a notable exception as adding any second feature, including the text features, beside Homogeneous
Texture resulted in performance degradation.

B. Results

The results of the run A PicSOM 1 in the high-level feature extraction task are shown in Figure 4. The MAP
score of our was 0.196, compared to the median of 0.141 and best run of 0.336. From the conceptwise results it can
be seen that the performance on concepts maps (40), waterscape/waterfront (43), and mountain (44) is relatively
good whereas on other concepts the results are rather close to the median.
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Fig. 4. Left: MAP values for all runs submitted to the high-level feature extraction task, our run highlighted. Right: Conceptwise average
precision values for our run (black) compared to median (light gray) and maximum (dark gray) values over all runs.

V. SEARCH EXPERIMENTS

For the search task, we submitted three automatic, three manual, and one interactive run. The run ids for the
runs are listed in Table II. The main motivation for the experiments was to test our approach in combining a text
query with multiple multimodal features and both positive and negative class models in video shot retrieval.

Before the search experiments, the used features were extracted from the provided example videos and images
for the search topics. The audio track was also extracted from the videos and all matching keyframes for the
videos were gathered from the collection of common keyframes of the development set. After feature extraction,
the best-matching map unit for each example object was located on every SOM of the corresponding modality in
use and the objects were mapped to them.



TABLE II
AN OVERVIEW OF PERFORMED RUNS IN THE SEARCH TASK. THE MEDIAN AND MAXIMUM VALUES OF MAP ARE CALCULATED FROM

THE TYPE A RUNS ONLY.

run id type text query features concepts MAP median max
F A 1 SOM-F1 7 automatic automatic modification - - 0.0473 0.0385 0.0674
F A 2 SOM-F2 3 automatic automatic modification default set string matching 0.0831 0.0476 0.119
F A 2 SOM-F3 5 automatic - default set string matching 0.0651 0.0476 0.119
M A 1 SOM-M1 6 manual manually modified - - 0.0568 0.0519 0.0815
M A 2 SOM-M2 4 manual manually modified default set - 0.0890 0.0760 0.169
M A 2 SOM-M3 2 manual manually modified default set manually selected 0.109 0.0760 0.169
I A 2 SOM-I 1 interactive user modifiable user selectable user selectable 0.158∗ 0.256 0.408

A default set of multimodal features was gathered based on feature-wise performance in the feature selection
process of the high-level feature extraction task, as listed in Table I. Therefore, all four video features (Motion
Activity, Average Color, Color Moments, Texture Neighborhood) and three image features (Color Layout, Edge
Histogram, and Homogeneous Texture) were used by default in the search experiments. Only the interactive search
mode allowed changing this set. As the text features in the high-level feature extraction task were concept-specific,
they were not eligible for the search task.

Instead of the concept-specific text features, a vector space was generated using the terms in the ASR/MT output
and text-based queries were used in all but one experiment of automatic search. In order to balance between
the longer ASR/MT text segments for the Arabic and Chinese shots and the shorter ASR text segments for the
English shots, we always concatenated five successive English ASR text segments together for elongating them. In
preprocessing, the text excerpts and query expressions were stemmed using the Porter stemming algorithm [7] and
the SMART stop list [8] for common terms was applied. The topic description was used as a default text query
after applying the stop list and stemming, although in all subtasks the default query was modified according to the
type of the subtask as described below. The query terms were weighted using inverse document frequency.

Table II gives an overview of the experiments performed in the search task. The runs F A 1 SOM-F1 7 and
M A 1 SOM-M1 6 constitute the required ASR/MT baseline runs for automatic and manual modes. The results of
the search experiments are discussed in Section V-D.

A. Text query processing and concept matching for automatic search

The ASR/MT output of non-English videos included additional information, such as if a certain proper name
was a person, location or organization. Of these we used the person and location information to create an index
of “known” proper names and if they were persons or locations. Furthermore, discriminative words were picked
up from the LSCOM-lite ontology descriptions to create a word–concept index. For example the word “minister”
would map to the concept government leader. This information was used in processing the text queries in the
automatic search experiments before being used in the retrieval.

Initially proper names were identified in the text query by recognizing single or consecutive words with a
capitalized first letter. These proper names were then compared with the index of known proper names using the
Levenshtein distance. If the index name with the shortest distance was sufficiently close to the query name then
the query name was deemed to be a misspelled version of the index name. The tolerance was dependent on the
length of the query name, so that for short names a shorter Levenshtein distance was needed for acceptance. The
identified misspelled words were corrected and the query string was cleaned, i.e. lowercased, dots and commas
removed, and unnecessary text such as the preceding “Find shots of” discarded.

Additionally, the word–concept index was used to identify words that might indicate useful class models. The
presence of negative words, like a preceding “not” word would negate the class model. Finally if a person’s name
was identified previously, the class models face and person were added automatically. In addition, in order to reduce
the number of studio shots retrieved, the class model studio was always used as a negative concept.

Table III shows the transformations done to a fictitious query string “Find shots of Omar Karammi, the former
prime minister of Lebannon”. The first row in the table shows the original string, and the second row the



identifications found by the system. The identification WORD-CONCEPT signifies a word found in the word–
concept index. The third row shows the actions or transformations performed, CORRECT means correcting a
spelling error. The fourth row shows the class models added, the sign before the class name identifies a positive
or negative class model. The last row shows the final processed text, capital letters, dots and commas removed.

TABLE III
TEXT QUERY EXAMPLE IN AUTOMATIC SEARCH.

original text Find shots of Omar Karammi, the former prime minister of Lebannon
identification PERSON WORD-CONCEPT LOCATION
actions DELETE CORRECT(Omar Karami) CORRECT(Lebanon)
classes +face, +person +government leader
processed text omar karami the former prime minister of lebanon

B. Settings for manual search

In the manual search experiments, our motivation was to study the utilization and usefulness of incorporating
the multimodal features and class models to the retrieval compared to using only text-based queries. The manual
search runs share the properties of the automatic runs, the only difference being that instead of using automatic
methods, text query modification and concept selection are performed manually.

The selection of the manually-modified text queries and positive and negative class models was not performed
systematically, but chosen based on a small number of reference queries on the development set. For each topic,
the exact text queries and the class models used in manual search as positive and negative are listed in Table IV.
The negative class model studio was used for all topics except 0163 and 0172.

C. Interactive search experiment

Our interactive search experiment for this year’s TRECVID can be considered preliminary as the user interface
was not specifically designed for video shot browsing and retrieval. The used user interface was a slightly modified
version of the basic PicSOM user interface designed for prototyping relevance feedback based retrieval of images.

Each query with the system began with an initial screen which contained all modifiable parameters for the search
session. The initial screen contained the description of the current search topic, the external example images and
videos, a text query box, and the lists of available multimodal features and class models. All parameters could
be changed from the default values, which were set as follows: The textual description of the search topic was
used as the default text query after removing the preceding “Find shots of”. All example images and videos were
marked as relevant and the default set of multimodal features (shown in Table I with asterisks) was selected. All
class models were turned off by default, but could be selected either as positive or negative models. After the user
had made the initial selections, the system proceeded to the ordinary round-based retrieval operation.

The system was set to always return 25 best-scoring shots. On each round, the query continues as the user
assesses the returned shots and marks the ones that she considers relevant. The remaining ones are regarded as
non-relevant. All previously found relevant objects are shown below to facilitate their subsequent removal from
the set of relevant objects. The user interface also supports the return to the previous query round or back to the
initial screen, where it was possible to make any changes to the parameters and start a new search. By clicking on
a thumbnail of a video shot, the system displayed the actual video shot and all keyframes associated with the shot
in a pop-up window. The ASR/MT text associated with a given shot was displayed in an overlay window when
the user moved the cursor over the corresponding thumbnail. The user interface is displayed in Figure 5.

The interactive experiment was performed by five researchers of our laboratory, four of which are involved in
different research topics with the PicSOM system. They did not have any direct contact with the TRECVID 2005
test data prior to the experiment. The arrangement was due to time constraints and the unpolished state of our
current user interface for interactive video search. The search sessions were limited to 15 minutes, during which
time, on average, the search was started from the initial screen 2.7 times and a total of 16 rounds of retrieval were
performed. In the results submitted to NIST, the union of all relevant shots in the end of a query were returned as



TABLE IV
TEXT QUERIES AND CLASS MODELS USED IN MANUAL SEARCH.

topic text query positive class models negative class models
0149 condoleezza rice government leader studio
0150 iyad allawi government leader studio
0151 omar karami government leader studio
0152 hu jintao government leader studio
0153 tony blair government leader studio
0154 mahmoud abbas abu mazen government leader studio
0155 iraq baghdad weather, studio
0156 tennis studio
0157 shaking hands meeting studio
0158 helicopter sky studio
0159 george w. bush government leader, walking/running studio
0160 fire smoke explosion/fire studio
0161 banners signs people marching studio
0162 enter leave walking/running, urban studio
0163 meeting meeting, office
0164 boat ship boat/ship, waterscape/waterfront studio
0165 basketball studio
0166 palm trees vegetation studio
0167 plane take off airplane, sky studio
0168 road car road, car studio
0169 tank military military, desert studio
0170 building building, urban studio
0171 soccer football goal studio
0172 office office

the result of the query without extending the result set with any other shots. The 24 interactive searches resulted
in a total of 829 shots marked as relevant, 689 (83%) of which were then judged relevant by the NIST assessors.

In order to be more comparable with other submitted interactive runs, the result sets were later augmented to the
allowed size of 1000 shots. The augmentation was performed as a virtual additional query round in which all the
relevant-marked shots during the original search are used as positive examples. The same class model selections as
in the manual search experiments were used (Table IV). The virtual query round was then set to return the number
of shots that were missing from the allowed number of 1000 shots.

D. Results

The MAP scores for all our search runs are listed in Table II. For comparison, the median and maximum
values of MAP calculated from all corresponding type A runs are also displayed. For the ASR/MT baseline runs
(F A 1 SOM-F1 7 and M A 1 SOM-M1 6), the median and maximum values of MAP are calculated from the
baseline runs.

Overall, the results indicate that video search performance of the PicSOM system can be improved by augmenting
a text query with automatically extracted multimodal features and suitable semantic class models. This improvement
can be observed both in automatic and manual search experiments. Perhaps surprisingly, using only the multimodal
features and class models resulted in a higher MAP value than using only the text query in automatic search.
This result naturally depends fully on the selection of topics and there is substantial topicwise variation. Still, the
combined run clearly outperforms both partial runs.

In the manual search experiments, we begin with the text query and first add the multimodal features, followed
by the addition of manually selected positive and negative class models. As can be seen in Table II, both additions
increase the resulting MAP value.

The results of our interactive search experiment were clearly below the median of all results. This was quite
expected as the user interface was not designed or optimized for this kind of experiments, and we did not augment
the result lists to the allowed 1000 shots. After augmenting the result lists as described in Section V-C, the MAP
value of our interactive run increased from 0.158 to 0.198.



Fig. 5. A screen capture of interactive retrieval with PicSOM.

VI. CONCLUSIONS

As a first time participant in TRECVID, our research group faced a lot of system development and other non-
recurring work in order to be able to run the TRECVID 2005 experiments. Therefore, we had limited time to study
the effects of different setups and parameter values on the overall performance. Furthermore, as low-level video
processing is not within our area of expertise, we decided to participate only in high-level feature extraction and
search tasks.

For indexing video shots, we have adapted a recent extension of the PicSOM system to support general hierarchical
multimodal objects. The video clip, audio track, associated keyframes and text data are all indexed separately and
the relevance assessments are propagated intrinsically. The common annotation of the development set is utilized
by building SOM class models for the available semantic concepts. The results of the experiments indicate that
these class models can be successfully used for representing semantic concepts together with textual features. In
the search experiments, we showed that the PicSOM system is able to merge different cues of the semantic content
of video shots without an explicit fusion stage. This can be seen from the automatic and manual runs, as in both
cases the best results are obtained when combining the text query with both multimodal features and class models.
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