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Abstract

In this paper, we describe the IBM Research system for in-
dexing, analysis, and retrieval of video as applied to the
TREC-2005 video retrieval benchmark. We participated in
the shot boundary detection, high-level feature extraction

and search tasks and performed several new experiments

in

all the tasks. The paper describes the details of the ap-

proaches as well as the performance analysis. In general
we observed good performance across all three tasks. In

the detection task, we were able to achieve top mean aver-

age precision performance for all over 7 systems. In au-

tomatic search, we were able to achieve top mean average

precision performance for 4 of our 6 automatic runs.

Keywords — Multimedia indexing, content-based re-

trieval, MPEG-7, LSCOM:-lite, Support Vector Machines,
Model vectors, Model-based reranking.
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Introduction

We participated in the TREC Video Retrieval Track and
submitted results for the following tasks:

1. Shot boundary detection.Our system is based on last

year’s system and uses a different MPEG decoder than
the one which produced us color errors last year. Re-
sults improved very significantly, yielding high detec-

tion rates and highest gradual accuracy across all runs.

2. Concept detection. We focused on approaches that

have been proven in the past to be successful while
experimenting with fusion across features and ap-
proaches in a flat as well as hierarchical fashion. For
all our 7 submissions we fused across multiple low-

level features. For 6 of the 7 submitted runs we also
fused across multiple approaches. We created internal
partitions of the development data set and used various
partitions, for training low-level feature-based mod-

els using individual approaches and for fusing across
features and approaches. Unlike our past TRECVID
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submissions, we were unable to enforce cross-concept
context [NS03a] due to time limitation. We choose
our runs for submission objectively based on their per-
formance on an internally held out set for selection
purposes. Based on our previous experience across
multiple TRECVID cycles [NSS04], we used support
vector machines extensively for learning the mapping
between low level features extracted from the visual
modality as well as from transcripts and production re-
lated meta-features such as channel, language, time of
the broadcast etc. We also built models for some if not
all features extracted using three other approaches: a
modified nearest neighbor learner, a maximum entropy
learner and a Gaussian mixture model. For some high-
level features from the benchmark which had enough
training samples, and were predominantly regional, we
also applied an extension of a new generalized multiple
instance learning algorithm [NS05]. For fusing across
approaches and features, we resorted to simple fusion
techniques. In one approach we fused across features
and approaches at the same time. In the other we first
fused across features and then across approaches. We
tried fusing with simple normalization and ensemble
averaging, with weights learning for a limited number
of approaches and with validity weighting [SNNO3].
Based on all the experiments we submitted the follow-
ing 7 runs:

e A JW_ABOF1: Best of Fusion across features
and approaches selected individually for each
concept

o A_JW_A1SAZ2: Flat fusion across all features and
approaches using statistical normalization and
ensemble averaging

e A_JW_A1SV3: Flat fusion across all features and
approaches using statistical normalization and
validity weighting

e A_JW_ABOA4: Hierarchical fusion across fea-
tures for each approach and validity weighted fu-
sion across all approaches

e A_JW_SVM5: Fusion across all features for each

approach and selection of the best single ap-
proach for each concept,



o A JW.M2SW6: Fusion across all features and In the paper, we describe the IBM Research system and
2 approaches SVM and MECBR with weightexamine the approaches and results for each run. The video
learning contentis analyzed in an off-line process that involves auto-

e AJWSVMED7: SVM models with fusion matlc shot bpundary Qetectlon, qudlo—wsual feature extrac-

jon, clustering, statistical modeling and concept detection,

across all approaches trained on the entire ate—

: . as well as speech indexing. The basic unit of indexing and
velopment set with optimal parameters from ong’. . ) .
partition réetrieval is a video shot.

Results indicate that two approaches)d_SVMFD7 .
and A JW_ABOA4 topped performance with a mear2 Shot detection
average precision of 0.3356 whereas the fusion across
a subset of approaches JW.-M2SW6 returned the |BM has submitted ten runs to the Shot Boundary Detection
lowest MAP of 0.3126 across the 7 runs. All the 7 ruri@sk. All runs use the same algorithm with minor modifica-
resulted in the top 7 MAPs across all the TRECVIfjons. The main change from our last year system is not in
runs evaluated. the algorithm but in replacing the MPEG-1 decoder.

In TRECVID 2004 the video encoding of most
. Search. We focused heavily on automatic searchf the TRECVID videos was encoded using an
this year, building fully automatic retrieval systemPPPPPPPPPPPPPP GOP (Group of Pictures) struc-
for both speech and visual modalities and producitigre, instead of the more common IPBBPBBPBBPBBPB
the top runs among automatic type A search systeragguence. Interestingly, decoding this GOP with the
We used a new text search engine for our speecemmercial decoder we used introduced cumulative color
based retrieval system and explored three automatitors while decoding the video frames through each GOP,
guery refinement methods for it. They were fusegfowing up to 3 percents RMS at the last P-frame of the
to generate a text-only baseline (runAE1_JW.T_7) GOP and dropping to zero at the next I-frame. Those errors
of 0.057 MAP. For our visual retrieval system, ware hardly noticeable in regular video playback. however,
applied a combination hypothesis of two complevhen processed by the SBD algorithm, those color errors
mentary light-weight learning approaches—SVM anghuse increased distances between color histograms of
MECBR—which for the first time significantly out-pairs of frames. This in turn causes an increase in all the
performed speech-based retrieval (ruAR_JW._V_3 adaptive thresholds, computed using statistics of frame
with MAP of 0.110), likely due to the inconsistendifferences over a symmetric window of 61 frames cen-
quality of ASR+MT transcripts on foreign broadcagered around the processed frame and used throughout the
videos. Finally, we developed methods for mode$ystem [AHI"03]. The higher thresholds, combined with
based re-ranking of both retrieval hypotheses badbe perceived frame noise, caused a significant decrease
on SVM models we built for the 39 concepts anndn detection recall and an overall degraded performance.
tated by TREC participants. Model-based re-rankingwas the first and only time we observed this type of
improved our text-only baseline to a MAP of 0.070lecoder color error, and only with this type of GOP
(run FA_2_JW_TM_6) and our visual-only baseline toencoding. Replacing the decoder with a different one after
a MAP of 0.119 (run EA_2_JW_VM _4). This year we TRECVID2004 resolved this problem.
used simple query-independent non-weighted fusionWe used the test of 2004 as our training set for 2005. Ta-
methods for combining our speech-based and vislé 1 shows processing results of test set of TRECVIDOA4.
runs, and while we did not observe gains from fufRuns are sorted by decreasing F# of the Detection of
ing the two modalities, our parameter-free fusion agdl Changes criteria. The ten runs with system ID-s
proach was able to generalize fairly well, consideringf TRECVIDO5 are clearly much better than the other
the wide performance gap we observed between fie runs, four of which representing our best submitted
two modalities. Our text+visual multimodal run (withSBD system in a different year, from TRECVIDO1 to
ID F_.A_2 JW_TV_5) essentially matched the perforTRECVIDO04, and the fifth one, marked N171QT was ob-
mance of the better modality producing a MAP dhined by converting all the MPEG-1 videos of the test set
0.106. Similarly, our model re-ranked text+visual muko MPEG-4 using a QuickTime player, and processing the
timodal run (with ID FA_2_JW_TVM _2) matched the MPEG-4 files. This last run was a test that shows a very sig-
performance of the re-ranked visual-only run, generificant improvement in gradual recall over the N171 run,
ating a MAP of 0.119. Overall, our new visual reusing the same executable and transcoded video sequences.
trieval approach and the model-based re-ranking dpereover, it showed no "noise” in the processing, which
proach were the most significant performance contriled us to look more carefully at the differences between de-
utors for our system. coders. As said, the single main cause for improvement



Table 1: Shot boundary detection results, run and evaluated with TRECVID 2004 test set. Labels in the leftmost column
correspond to the TRECVID year in which the system was submitted.

TRECVID | SysID AllF#  AllRcl  AllPrc CutsF#  CutsRcl  CutsPr¢ GradF#  GradRcl  GradPrg¢ GrAcF#  GrAcRcl  GrAcPrc
TVIDO5 N209 0.892 0.872 0.912| 0.933 0.935 0.931 | 0.798 0.741 0.865 0.881 0.846 0.918
TVIDO5 N208 0.890 0.875 0.906| 0.929 0.931 0.928 | 0.803 0.758 0.854 0.876 0.842 0.913
TVIDO5 N207 0.890 0.873 0.907| 0.928 0.932 0.925 | 0.802 0.750 0.862 0.878 0.841 0.919
TVIDO5 N212 0.890 0.874 0.906| 0.928 0.933 0.924 | 0.802 0.750 0.862 0.877 0.840 0.918
TVIDO5 N210 0.889 0.873 0.906| 0.929 0.932 0.927 | 0.799 0.750 0.856 0.880 0.846 0.917
TVIDO5 N204 0.889 0.871 0.909| 0.928 0.929 0.928 | 0.801 0.749 0.861 0.867 0.843 0.892
TVIDO5 N202 0.883 0.883 0.882| 0.915 0.939 0.892 | 0.809 0.766 0.857 0.874 0.827 0.927
TVIDO5 N198 0.882 0.878 0.885| 0.918 0.940 0.898 | 0.797 0.748 0.854 0.878 0.833 0.929
TVIDO5 N197 0.881 0.878 0.885| 0.918 0.939 0.898 | 0.797 0.749 0.853 0.878 0.832 0.929
TVIDO5 N194 0.881 0.886 0.876| 0.916 0.940 0.894 | 0.802 0.774 0.833 0.877 0.841 0.915
POSTO04 N171QT | 0.855 0.825 0.888| 0.892 0.885 0.900 | 0.769 0.698 0.857 0.864 0.836 0.894
TVIDO2 N047 0.844 0.822 0.867| 0.891 0.915 0.867 | 0.726 0.625 0.866 0.744 0.646 0.879
TVIDO4 N171 0.832 0.774 0.898| 0.897 0.899 0.896 | 0.655 0.512 0.909 0.845 0.804 0.890
TVIDO1 Nalm1 0.774 0.724 0.831| 0.863 0.903 0.827 | 0.494 0.347 0.855 0.640 0.480 0.961
TVIDO3 N127 0.765 0.685 0.866| 0.861 0.862 0.861 | 0.463 0.311 0.902 0.687 0.534 0.965

Table 2: Shot boundary detection results, run and evaluated with TRECVID 2005 test set. The official submission runs of
this year are marked with TVIDO5. run are sorted in decreasing F# value of detection of All Boundaries.

TRECVID | SysID | AllF# AllRcl  AllPrc CutsF#  CutsRcl  CutsPr¢ GradF#  GradRcl  GradPrg¢ GrAcF#  GrAcRcl — GrAcPrc
MAX 0.897 0.894 0.901| 0.942 0.936 0.949 | 0.789 0.788 0.791 0.852 0.833 0.871
TVIDO5 N204 0.876 0.909 0.845| 0.912 0.933 0.891 | 0.776 0.838 0.722 0.836 0.836 0.837
TVIDO5 N212 0.875 0.914 0.839| 0.911 0.936 0.887 | 0.775 0.848 0.714 0.850 0.827 0.875
TVIDO5 N207 0.875 0.912 0.840| 0.912 0.936 0.890 | 0.772 0.842 0.712 0.851 0.827 0.877
TVIDO5 N208 0.871 0.913 0.832| 0.910 0.936 0.886 | 0.764 0.848 0.695 0.852 0.833 0.871
TVIDO5 N209 0.869 0.916 0.826| 0.906 0.940 0.875 | 0.765 0.843 0.700 0.847 0.824 0.872
TVIDO2 N47 0.867 0.891 0.845| 0.899 0.935 0.867 | 0.770 0.764 0.776 0.820 0.748 0.908
TVIDO5 N210 0.863 0.915 0.817| 0.902 0.937 0.870 | 0.759 0.853 0.683 0.843 0.818 0.869
TVIDO1 Nalml | 0.854 0.903 0.811| 0.885 0.937 0.839 | 0.762 0.803 0.726 0.814 0.729 0.923
TVIDO5 N202 0.854 0.912 0.803| 0.888 0.935 0.846 | 0.760 0.848 0.688 0.850 0.824 0.878
TVIDO5 N198 0.849 0.917 0.791| 0.882 0.940 0.831| 0.758 0.850 0.684 0.844 0.812 0.879
TVIDO5 N197 0.849 0.918 0.790| 0.882 0.940 0.830 | 0.757 0.851 0.682 0.844 0.812 0.879
TVIDO3 N127 0.843 0.865 0.822| 0.877 0.895 0.860 | 0.746 0.778 0.718 0.836 0.765 0.922
TVIDO5 N194 0.841 0.919 0.776| 0.883 0.938 0.834 | 0.733 0.864 0.637 0.846 0.823 0.870
TVIDO4 N171 0.839 0.869 0.812| 0.876 0.905 0.849 | 0.732 0.764 0.703 0.793 0.806 0.780

with the 2005 systems on this data set was the change3of Video Descriptors
decoder.

. 3.1 Visual Features
Table 2 shows the processing results of the same sys-

tems on the test set of TRECVID05. Compared to Tabifthe system extracts eight different visual descriptors at var-
1, most of the ten 2005 systems maintain relatively simil@ius granularities for each representative keyframe of the
performance between the two test sets, TRECVID04 avideo shots. Relative importance of one feature modality
TRECVIDO05. System N204 top our 2005 submissions arg. another may change from one concept/topic to the next,
is different in that in computing the color histograms it igthe relative performance of the specific features within a
nores the bottom 20 percents of the frame, which often cqjiven feature modality (e.g., color histogram vs color cor-
tains overlay text. When excluded from the histogram, ri¢logram) should be the same across all concepts/topics,
slightly improves the discrimination between frames acrogsd can therefore be optimized globally for all concepts and
different shots. The row marked as MAX contains in eatbpics.

of the four evaluation criteria the values obtained by the bestThe goal of feature selection was to optimize globally
of all 163 runs in TRECVIDO5, when ranked by the F# ahe feature type and granularity for each feature modality
that criteria. These maximum results correspond to thr&g that the fusion across modalities gives optimal results
different runs, marked as hu26, bs-8 and N208. Our besth for concept detection and search task. We performed
detection rates are delivered by system N204, only sligh8ytensive experiments using the TRECVID 2005 develop-
below the best performing run this year. System N208n#ent set and TRECVID 2003 query topic to select the best
hair away in detection rates from N204, produced the bésature type and granularity for color and texture modalities
F# for Gradual Accuracy (0.876) across all 163 submittésk concept detection and search tasks, respectively.

runs. Our past systems performed better on the 2005 datghe following descriptors had the top performance for

set than on the 2004 data set, despite of using the old g@th search and Concept mode“ng experiments:
coder. Evidently the encoding of the test set this year is of

the more common GOP sequence, as oppose to last year. ¢ Color Histogram (CH)—global color represented as a



166-dimensional histogram in HSV color space.  The scaled vector is added to the motion image, which ag-
gregates all such vectors for the entire shot. The result-
e Color Correlogram (CC)—global color and strucyg two-dimensional motion image is cropped, linearized,
ture represented as a 166-dimensional single-bandggh normalized, and used as a feature vector. In the case
auto-correlogram in HSV space using 8 radii depts TREC videos, this vector contains 260 features, corre-
[HKM *99]. sponding to a scanline-version of the motion image.

e Color Moments (CMG)—localized color extracted
from a 5x5 grid and represented by the first 3 momen3s3  Text Features

;%ﬁg?:}g;g;ﬁg:?gg;ab color space as a normallzwe extracted several text features for each shot based on the
' speech transcript corresponding to the shot after expansion

e Co-occurrence Texture (CT)—global texture repr&f the shot boundaries to include up to 5 immediate neigh-
sented as a normalized 96-dimensional vector of €irs on either side without crossing full video clip bound-
tropy, energy, contrast, and homogeneity extract@fes. This shot expansion results in overlapping speech

from the image gray-scale co-occurrence matrix at $ggments and attempts to compensate for speech and visual
orientations. mis-alignment. The resulting shot documents were then

processed for stop-word removal and Porter stemming, and
o Wavelet Texture Grid (WTG)—localized texture exfor each term, the following text features were computed:
tracted from a 3x3 grid and represented by the normal- .
ized 108-dimensional vector of the normalized vari- ® Term Frequency (TF) in given shot document

ances in 12 Haar wavelet sub-bands for each grid re+ |nverse Document Frequency (IDF) across all shot
gion. documents

e Edge Histogram Layout (EHL)—localized edge his- ¢ TF*IDF
tograms with 8 edge direction bins and 8 edge mag-
nitude bins, based on a Sobel filter, extracted from a
5-region layout consisting of four corner regions and a

center overlapping region (320-dimensional). Each shot was then represented in a sparse vector format,

. . . ..where theith dimension reflected one of the above mea-
Although, the described visual descriptors are very S|m|lsa&reS for thath term in the speech vocabulary. These fea-
to the MPEG-7 visual descriptors [MSS02], they differ in & )

T S : es were used for SVM-based modeling in the High-Level
sense that they have been primarily optimized for retne\@ )
. ; . Feature Extraction task.
and concept modeling purposes, with much less considera-

tion given to compactness or computational efficiency.

e Binarytermflag, O or 1, indicating presence or absence
of given term in given shot document

3.4 Semantic Features

3.2 Motion Features The third feature modality we used was that of 39-

dimensional semantic model vectors built from the detec-

We introduce a novel low-level visual feature that summas -onfidence scores with respect to 39 LSCOM:-lite con-

rizes motion in a shot. This feature leverages motion vect_(erespts_ Extraction of the model vector features based on the
from MPEG-e-nCO(;Jed wdeq, and. aggregates local MOt antic modeling is described in detail in section 4.
vectors over time in a matrix, which we refer to as a mo-

tion image. The resulting motion image is representative of
the overall motion in a video shot, having compressed te  Concept Modeling
temporal dimension while preserving spatial ordering.

Motion vectors are present for all macroblocks in P ar@ur basic principle for modeling semantic concepts or high-
B frames of MPEG video. For I-frames, which start a GORvel features based on low-level media features has consis-
sequence of P and B frames, motion vectors have zewmntly been to apply a learning algorithm to the low-level
magnitude. We generate a new image for each shot wiglatures [NBS 02, NJO3, NLN-03, NSS04, NNT05a]. Our
dimensions equal to the matrix of macroblocks. For TREiterion has always been to leverage generic learning al-
news videos, motion images are dimensioned 20 colungwithms for all concepts rather than focus on an overly
by 13 rows. We preserve the spatial location of macroblosgecific and narrow approach that can only work for a sin-
motion vectors by placing the vector’s origin in the comgle concept. In our view generic learning provides the
responding position in the motion image. We scale eachly scalable solution for learning the large scale semantics
vector by some constant factor F, which represents the pneeded for efficient and rich semantic search and indexing.
dicted future direction of that vector over F-many frameBigure 1 illustrates our concept detection pipeline.



‘ ‘ three other approaches: a modified nearest neighbor learner,
| Feature Extraction!  Modeling | Fusing a maximum entropy learner and a Gaussian mixture model.
; 1 ! models of . .
‘ ! each For some high-level features from the benchmark which had
3 { concept enough training samples, and were predominantly regional,
; | features- we also applied an extension of a new generalized multiple
e 1 | and i learning algorithm [NSO05
; | approaches instance learning algorithm [ ]
I | |
) : :
N S [ pfer] | ' .
iz e 3 3 4.2.1 Support Vector Machines
L2 ‘ -
. m ' ' . .
Videos 3l || ; We represent keyframes with a set of low-level visual fea-
N ‘ ‘ :
|8 3 [ =0 ] ; tures, such as colors, textures, and shapes, and motion. We
— ||z 3 3 also extract a bunch of production meta-features. For the
3 3 visual features and production meta-features we use sup-
| port vector machines with non-linear kernels. We also rep-
! ! resent shots by text features extracted from the transcripts

and then convert them to sparse representation formats. We
Figure 1. The IBM TRECVID 2005 Concept Detectiomuse support vector machines with linear kernels for the text
pipeline. features.

In the training phase, we learn feature representations
L . corresponding to the binary hypotheses for each concept
4.1 D_ata_Part't'On'ng and Parameter Opti- (presegce/abgence) using s}:Jpch))rt vector machines [VapQg].

mization Support Vector Machines are popularly used for classi-

We partitioned the development data set provided by Ni&ation and regression in various domains including the
into the following 4 internal partitions for facilitating hier-mU|t'med_'a domalin's. For the past feyv years support ve(?-
archical processing experiments and selection by randorrr% machine classifiers have resulted in top performance in

assigning videos from the development set to each partiti8ﬂ.ncfpt detection for NIST TRECVID evaluation; [NJO3,
The list below gives approximate number of keyframes hl]LN 03’_ NSS04, NNTO5a]. Support vector machmeslu.sed
each partition. with nonlinear kernels allow us to learn nonlinear decision

boundaries even when the data is high dimensional and are

e Training Set: 41K keyframes not affected by the curse of dimensionality due to the way
o the optimization is formulated to minimize empirical risk.
» Validation Set: 7K keyframes They also offer good generalization capability. For the con-

cept detection experiments there has been extensive report-
ing of the use of support vector machine classifiers and the
e Selection Set: 7K keyframes procedures for tuning the model parameters including ker-
nel parameters.

We use the held out validation set in selecting model
parameters as well selecting optimally performing features
This year we focused on approaches that have been prdvem across all low-level features. We use the Radial Basis
in the past to be successful while experimenting with nd¢ernel for the SVM experiments.
techniques for cross granularity propagation. We then proPerformance of SVM classifiers can vary significantly
ceeded to fuse across features and approaches in a flatiisvariation in parameters of the models. Choice of the
well as hierarchical fashion. For all our 7 submissions vkernels and their parameters is therefore crucial. To min-
fused across multiple low-level features. For 6 of theiihize sensitivity to these design choices, we experiment
submitted runs we also fused across multiple approachegh different kernel parameters. Radial basis function ker-
We created internal partitions of the development data sels usually perform better than other kernels. In our ex-
and used various partitions, for training low-level featur@eriments we build models for different values of the RBF
based models using individual approaches and for fusipgrametery (variance), relative significance of positive vs.
across features and approaches. We used support vewtgative exampleg (necessitated also by the imbalance in
machines extensively for learning the mapping between lthie number of positive vs. negative training samples) and
level features extracted from the visual modality as well &sde-off between training error and margin While a
from transcripts and production related meta-features swudtarse to fine search is ideal, we try several values, of
as channel, language, time of the broadcast etc. We glsand ¢ thus evaluating dozens of configurations. Using
built models for some if not all features extracted usirthe validation set we then performed a grid search for the

e Fusion Set: 7K keyframes

4.2 Learning Approaches



combination that resulted in highest performance meastire model. In MaxEnt, the process of defining predicates
value, where this measure is the non-interpolated aver@geentral to modeling: The goodness of the models is de-
precision over 1000 retrieved shots as a measure of retrigya@hdent on the ability of these predicates to capture relevant
effectiveness. LeR be the number of true relevant docinformation and we differentiate from previous work in this
uments in a set of siz8; L the ranked list of documents[JMO04].

returned. At any given index let R; be the number of In our experiments, we extract 3 types of low-level image
relevant documents in the tgpdocuments. Lef; = 1if features from each video shot: Lab space color moments,
the j** document is relevant andl otherwise. Assuming edge histograms and summary statistics of grey-level co-
R < S, the non-interpolated average precis{@®) is then occurrence matrices. Together, these form our 3 different

defined as low-level descriptors which we will terr€olor, Edgeand
1< R; Texturein further discussions. Furthermore, we partition
R Z 7 *1; @) each shot key-frame (comprisig0 x 240 pixels) into 35
j=1

regions b0 x 48 pixels each) and extract the feature descrip-
In the detection phase we use the optimal models to evaks for each of these 35 regions.

uate the target images for the presence/absence of the cokVe try several predicates including unigram predicates,
cept and generate a confidence measure correspondit@igtion dependent unigram predicates, and 2 types of bi-
that can then be used to rank images for each concept. gram predicates. Both types of bigrams are constructed by

combining the tokenized features in the product space of
422 Gaussian Mixture Models the unigram predicates. This choice imposes the possibil-

ity of obtaining bigram values that are not supported in the
We built gaussian mixture models for all the benchmatkaining data, resulting primarily from the sparseness of the
concepts using mixtures of diagonal Gaussians. This @poduct space. To counter this, we employ an approach
proach is known to work for concepts with a large numbgtspired from class-based language models in speech pro-
of training samples but results in lower performance thagssing. When two unigrams are composed into a bigram,
SVM models for concepts with small number of traininge treat them differently. We start with few clusters for
samples [vtr02, NJO3]. We build conditional density modhe composed unigrams and slowly increase the number of
els for positive samples and negative samples and then usiedters such that the number of unique bigram predicates
the likelihood ratio test to generate the ranking at detectigbserved (in the training data) at each step matches the total

time. possible bigram product space values. We stop at the largest
cluster size for which this condition is met in the training
4.2.3 Maximum Entropy Methods data. The above predicates model individual low-level fea-

ture descriptors (i.e. Color, Edge, Texture). We then de-
In MaxEnt modeling, we assume that a random process pjgtop predicates predicates that model the interactions be-
duces an output (label) given a contextr. In multimedia tween the various low-level feature descriptors where the
annotation,y, which is a member of a finite set (vocabuint observation predicate is active only if all low-level de-

lary) Y, can be seen as a label for a specific shot. Andscriptors are present in a given region. For more precise
a member of a finite seX, as extracted information (fea-description please see [mst] and [J. 05].

tures) from the current frame. Training data is presented
in pairs(z1,y1), (x2,Y2), .., (Tn,yn). The task is to learn B )
possible correlations betweerandy, and to build statisti- 4-2-4 Modified Nearest Neighbors—MECBR

cal models thgt can be used t.o. annotate pr_eviopsl_y ur_lsﬁ"/ﬁﬁ'ti-example content-based retrieval (MECBR) is a mod-
shots automatically. The empirical probability dlstrlbutlonied nearest neighbor classifier used typically in content-

function (pdf) based on training data is as follows based retrieval (CBR) settings [NS03b, NNTO5b]. Pre-
1 viously, we used MECBR to generate fully automatic
pley) = frea(z,y) (2) visual runs for the TRECVID 2003 and 2004 search

tasks [AHIT03, ACF"04]. This year, in addition to the
Wherefreqis the count of a specific paftr, y) in the train- search task, we explored MECBR for the concept detec-
ing data. In real world applications, the training set siz®on task as well. MECBR models a query topic or a con-
is finite. Therefore, the empirical distribution is a pocarept from a set of positive examples by dividing the ex-
estimate of the joint pdf. Based on this partial informamples into visually distinct categories, selecting represen-
tion, MaxEnt modeling can be used to estimate the pdf thatives from each category, and treating each representa-
generated the empirical distributigiiz, y) in an unbiased tive example as an independent CBR query. The results
way[Jay57]. At the core of the modeling process jpried- from the multiple queries are then aggregated within and
icates These predicates are used to specify constraintsammoss categories into a single ranked list. Parameters of



the method determine how exactly the individual result lis#s2.5 Multiple Instance Learning

are fused together, with alternatives ranging from simple ) ) ]
non-weighted fusion (e.g., OR fusion logic across examtatistical learning techniques provide a robust framework

ples) to complex weighted Boolean fusion (i.e., a mixtuf@r learning representations of semantic concepts from mul-
of AND/OR fusion with weights) [NS03b]. The end resulfimedia features. The bottleneck is the number of training
can therefore be thought of as the fusion of several distant@MPles needed to construct robust models. This is partic-
weighted nearest neighbor classifiers, each working witfy/gy expensive when the annotation needs to happen at
different subset of the positive examples. This allows fiPer granularity. Itis precisely due to the cost of regional
different score normalization and aggregation methods3Anotation, that the TRECVID 2005 Common Annotation
different portions of the feature space, which is an advafKercise only involved frame-level annotation. We experi-
tage over the traditionat-nearest neighbor formulationMent with a novel approach where the annotations may be
The disadvantage of this method is in the computatiorfd]tered at coarser spatial granularity while the concept may
overhead of executing a separate CBR query potentially fill be learnt at finer granularity. Using the multiple in-
each positive example. For search scenarios where the ngi0ce learming paradigm, we learn representations of con-
ber of positive examples is very limited (e.g., less than 1§PtS occurring atthe regional level by using annotations for
this is not a significant overhead. However, in the case $iveralimages. We use an extension of the generalized mul-
concept modeling, where the training set may contain thd{R'€ instance learning algorithm [NS05] that can scale to a
sands of positive examples, this approach is clearly not s¢&[9€ number of training samples as well as a large num-
able. To reduce the computational requirements of the &5 Of instances per bag. The algorithm also provides the
proach for modeling of frequent concepts, we sample tﬂglhty_ to plug in different density modeling or regression
positive examples using a biased sampling method whig§ghniques. _ o _ _
iteratively selects the most visually distinct examples from The essence of applying multiple instance learning to dis-
a given set. This is based on the idea of anchoring, whafabiguate across granulanty is shown in Flgure 2. Here we
each successive anchor is selected so that it is as far awaysgshe same notation Bgsandinstancesas in [MLP98].
possible from the previously selected anchors [NS03c]. FbBag is a collection of instances. Annotation is provided
concept detection, we sampled up to 800 distinct positi%the bag level but actually reflects the label of one or more

examples for each concept and treated them as indepenHiignces in that bag. If at least one instance (region) that
category representatives. is positive the corresponding bag is labeled positive. Con-

versely a bag is labeled negative when all instances (re-
gions) are negative for the semantic concept. The problem

. . is to then learn in some feature space a concept point or a set
The above sampling approach naturally tends to pick o b ptp

. - . . - BFconcept points that are closest to maximum possible pos-
liers, however, so it is very sensitive to noise in the training bags (i.e. instances in these bags) and simultaneously

Q\Way from as many negative bags (i.e. negative instances)

this, we used annotation redundancy, where available, togg- ossible. Figure 2 uses a 2 dimensional feature space to
sociate a relevance score to each shot. In particular, wiy trate this idea

deciding how to label a shot with redundant but conflict- For TRECVID we applied multiple instance learning
ing anno'Fations, we cons!dered threg different pplicies T8I[l|y to a limited number of concepts for which annotation
aggregz_itlng the overlapping annotations. The f.|r.st pOII\(/:\)Ias sufficient and the criteria to leverage multiple instance
was a liberal one where a shot was labeled positive if afl

of its annotations were positive. This was most applicabﬁeyammg e;pphed. the 4 h lied to all bench
to very rare concepts, where a false negative can be mor \gure > compares the = approaches, applied 1o all bench-

detrimental than a false positive in the annotation. The sgg&—“k concepts using an internal partition (Fusion set)

ond policy was a strict one, requiring a perfect agreement

across all annotators in order to mark a shot positive. TRiS3  Fysion

policy was most conservative, resulting in the smallest set of

positive examples, and was therefore applicable only to e applied ensemble fusion methods to combine all con-
most frequent concepts where false positives can be maebpt detection hypotheses generated by different modeling
more damaging than false negatives. The third policy waseghniques or different features. In particular, we performed
2/3 majority vote-based annotation and was most approgigrid search in the fusion parameter space to select optimal
ate for concepts that were neither too rare nor too frequdnsion configuration based on a held-out validation set per-
The optimal annotation resolution policy as well as the ofbrmance. Fusion parameters include a score normalization
timal score normalization and fusion parameters for eactethod and a score aggregation method. Score normaliza-
concept-feature combination were then determined based methods include range normalization, statistical nor-
on a held-out validation set performance. malization shifting the score distribution to zero mean and



Learnt  also explored two main fusion variations depending on the

COﬁC@P order in which we fused hypotheses.

‘ ( cept detection hypothesis on a held-out validation set. We

ljgositige Flat Fusion across Features and Approaches. The first
a, t . .
[3 s approach was based on a single-level global fusion across

positive  g|| individual hypotheses, regardless of whether they came

instance

Feature 2

from different features or modeling techniques. We call this
Negativ 112t fusion With this approach we performed a full grid
e Bag search in the fusion parameter space but due to the large

ne;?we number of hypotheses being fused, we explored only binary

®e®
O instance  weights (presence or absence of each hypothesis) with the
* weighted average score aggregation method. This has the

lfeature effect of doing hypotheses selection but only non-weighted
fusion.

Figure 2: This figure shows a distribution lodgsin a two

dimensional feature space. Only bags are labeled. Multipléerarchical Fusion across Approaches. The other ap-
instance learning can result in the region in orange as fif@ach was based on hierarchical, two-level fusion, where
target concept as it is closest to as many positive bagsaiigfeatures were fused first for each modeling approach,

possible while farthest from many negative bags. followed by fusion across the independent modeling ap-
proaches. Thikierarchical fusionlimits the number of hy-

potheses being fused at the second level and significantly re-
duces the fusion parameter search space. We were therefore
able to explore more weighted combinations at this level by

Approach Comparison

0 considering 10 uniformly distributed weight values for each
' dimension.

50.6

205 HSWM

o4 svecer| 4.4 Building Model Vector

S0.3 0 MAXENT] .

2.,] oG We bu!lt SVM models for a}II 39 concepts of the LSCOM-
014 lite lexicon [NKK*] shown in Figure 4.
0l For each concept we applied the same training and vali-

dation procedure as applied to the ten benchmark concepts.
The only exception was that in the interest of time we were
able to fuse across only 4 features i.e. color correlgram,
color moments on @ x 3 grid, global cooccurrence texure
and wavelet texture on&ax 3 grid. We fused across these
features using statistical normalization and ensemble aver-
aging. The performance of the 39 concepts on an internal
partition, is shown below in Figure 5.

Figure 3: This figure compares the performance of the 40nce these 39 concepts are detected, we then stack them
approaches across the 10 benchmark concepts on thetggether to create model vectors. These vectors are used

sion Set. SVMs outperform all other approaches by a wig®ng with low-level features in our visual search experi-
margin. ments. The models are also used for reranking in our search

experiments describes in Section 5

Building

Car
Explosion/Fire
Flag-US

Maps

Mountain
Prisoner

Sports
Walking/Running
MAP

Waterscape/W aterfront

Concepts

uni-variance, Gaussian normalization, and rank normaliza; .
tion which discards the absolute scores and uses only @g Experiments and Results

rank of each item in the result list. The fusion methods VB8hsed on all the experiments we submitted the fo"owing 7
considered include MIN, MAX, AVG, and weighted AVGyyns:

fusion. As a special case of weighted averaging, we consid-

ered validity-based weighting, where the weights are pro-e A_JW_ABOF1: Best of Fusion across features and ap-
portional to the Average Precision performance of each con- proaches selected individually for each concept
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Figure 5: The performance of the modeled LSCOM-lite lexicon on an internal test setTNKK

e A JW_A1SA2: Flat fusion across all features and amf approaches AIW_M2SW6 returned the lowest MAP of
proaches using statistical normalization and ensembBl8126 across the 7 runs. All the 7 runs resulted in the top
averaging 7 MAPs across all the TRECVID runs evaluated.

) . Figure 6 shows the IBM runs in comparison to the rest of

* A,JWA18V3. Flat fl%S'.on across gll f(_Eatures and.a_qﬁe submitted runs for TRECVID. The blue colored bars de-
prqaches using statistical normalization and Val'd'pfote the 7 IBM runs and all result in top MAP performance.
weighting A concept-wise comparison with the mean, median and

o A_JW_ABOA4: Hierarchical fusion across features fopest non-IBM run is shown in Figure 7
each approach and validity weighted fusion across all

approaches 5 Search
e A_JW_SVMS5: Fusion across all features for each ap-

proach and selection of the best single approach ®r1  Automatic Search

each concept, ) )
The IBM team focused heavily on automatic search for

e AJW.M2SWE6: Fusion across all features and 2 aghis year's TRECVID, submitting 6 automatic runs out
proaches SVM and MECBR with weights learning of 7 allowed submissions. Our automatic search system

e A_JW.SVYMED7: SVM models with fusion across all'@S & combination of speech-based retrieval with automatic

approaches trained on the entire development set V\?Vfﬁg?/ ;?T\I/\r/]:imrinlga\:lr?il;al aretrrlg\;iLZ:mgng ;%rgg_%z;tgé cr);_
optimal parameters from one partition g g g.app '

ranking using automatic concept detectors for the 39 con-
Results indicate that two approachesJW_SVMFD7 cepts from the TRECVID 2005 common annotation effort.

and A JW_ABOA4 topped performance with a mean aveAll processing was done at the sub-shot level based on the

age precision of 0.3356 whereas the fusion across a sulbsaster shot boundary reference provided by the Fraunhofer
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Figure 6: IBM Concept Detection runs compared to all TRECVID 2005 concept detection system runs. IBM runs repre-
sented by blue bars. return MAP between 0.3126 and 0.3356.
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Figure 7: IBM runs result in top performance for 7 of the 10 benchmark concepts with performance above the median in
the rest.

Institute [Pet], where each sub-shot was represented by.h1l Speech-based retrieval

single keyframe and a corresponding speech transcript seg- _ _ i _
ment. Results were then aggregated at the shot level by 2kI SPeech-based retrieval system this year was built using
ing the maximum confidence score across all sub-shots féff |BM Unstructured Information Management Architec-

each shot. The overall system is illustrated at a high leveitii€ (UIMA) [FLO4] and the JuruXML semantic search en-
Figure 8. gine [MMA*02] developed by IBM Research. The UIMA

SDK is scheduled to be open-sourced by the end of the year
and is currently available for download at the IBM Alpha-
works site [uim]. The SDK also includes the JuruXML se-
mantic search engine. In addition to the base UIMA SDK,
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Figure 4: The modeled LSCOM-lite lexicon [NK# visual HexE

we used several UIMA components developed by IBM Re- Multi-modal results

search for advanced text analytics. These include the TAL- l QLRI 2

ENT system for Text Analysis and Language Engineering

Technology, the Resporator (RESPOnse geneRATOR) SyStig re 8: Overview of IBM automatic search system.
tem [PBCRO0O] built on top of TALENT, and the PIQUANT

Question Answering system [CCCEB4] built on top of

RESPORATOR. We used the TALENT component to pgfrocess [Roc71] can then be used to effectively refine the
form token and sentence detection, lemmatization, and pgfiery. In particular, a set of top-ranked documents is first
of-speech annotation. The RESPORATOR component Wagrieved using the original user query. The weight of the
used to annotate text with over 100 semantic categories,diiery terms is modified according to their frequency in this
cluding both named and unnamed entities, such as peopi®, |n addition, expansion terms are selected from this
roles, objects, places, events, etc. It is a rule-based agt, based on various selection criteria, and added to the
notator developed originally for Question Answering puguery. The refined query is then submitted to the system,
poses [PBCRO0] and used extensively by the PIQUANgsulting in the final set of documents considered relevant
system. Finally, we leveraged the query analysis and fgthe original user query. An alternative way to select addi-
finement Capabilities of P|QUANT in order to do automatiﬁona| terms for query expansion is to consitiical affini-
query expansion to the categories detected by RESPORAs (LA) which are pairs of terms that frequently co-occur
TOR. For example, a query containing the term “basketbalfjithin a close proximity of each other (e.g., phrases). The
would automatically be expanded to include the “SPORTg&]ea is that if one of the terms in a lexical affinity appears
tag detected by the RESPORATOR component. This essgnthe query text, it is likely that the other part of the LA is
tially performs automatic query sense disambiguation ago relevant. An LA-based query expansion method was
expansion. proposed in [CFPS02]. We used both automatic query ex-
In addition to the RESPORATOR-based query expapansion approaches since both are available as native func-
sion, we explored two other methods for automatic quetignality in the JuruXML search engine. Our final speech-
refinement based on pseudo-relevance feedback [XC%&ised retrieval system was therefore the combination of
which are based on the assumption that the top-ranked dbcee separate automatic query refinement methods—QA-
uments for a given query are indeed relevant. Traditiortsdsed query expansion to text categories, Rocchio-based
relevance feedback methods such as Rocchio refinemesgudo-relevance feedback query expansion, and lexical

11



affinity-based pseudo-relevance feedback query expansion.
The parameters for each of the methods were tuned glob-
ally on the TRECVID 2003 corpus and search topics, and

the three methods performed comparably on our internal

experiments. The ranked lists generated by the three ap-
proaches were therefore fused using a non-weighted query-
independent Round Robin fusion—e.g., min rank aggrega-
tion of individual rank lists.

5.1.2 Visual retrieval

For our visual retrieval subsystem, we used the approach
from [NNTO5b]. For brevity, we give only a brief sum-
mary of the approach here along with main deviations
from [NNTO5b].

Visual retrieval using SVM. Discriminative modeling, Figure 9: Combination Hypothesis lllustration. Each line
such as Support Vector Machines (SVM), works well fdepresents a primitive SVM hyperplane between the same
the Concept Detection task. The use of the SVM for tis€t of positive examples and a randomly sampled bag of
Search Task faces two challenges: pseudo-negative examples. Each circle represents a single

CBR query executed by the MECBR method.
e Very small number of distinct positive examples

e No negative examples i.e. bags as in [NNTO5b]) are very specific to the nature

] of the search task, and therefore, optimized jointly. The
We overcome these challenges by creating pseud;\ scores corresponding to each hyperplane are fused us-

negative samples from unlabeled data and using a *bggy AND logic, so that the final SVM model corresponds
ging” approach to mitigate the problem of imbalanced the intersection of several positive hyper-spaces derived
learning.  This allows us to apply SVM discriminativgrom each of the primitive SVM models. Thus, the objective
modeling to query topics with very limited training datdf the ratio and bag number selection was to minimize the
(e.g., on the order of 10 positive examples only). Dignder-sampling rate of negative examples while avoiding
criminative modeling is very complementary to other popghe imbalance problem in the learning process [Jap00], and
lar approaches for content-based retrieval, such as neargstserving the underlying distribution of the data points.
neighbor modeling.  While nearest-neighbor approachfigese parameters were jointly determined based on the lim-
have good recall, they usually suffer from poor precisiofng factor of having avery small number of distinct (i.e.
which is where discriminative models, such as SVMs, cag near-duplicate) positive examples. Létbe the num-
excel. We therefore explored the combination of SVMey ofpags K the imbalance ratio, anit number of posi-
with the MECBR modified nearest-neighbor approach. {fe examples for a specific query. We tested three different

our experiments we confirmed that the two approaches gegroaches for the parameter selection with iniiaget to
very complementary, each outperforming the other in sorg-

cases, with the combination outperforming both in almost

all cases. The overall SVM topic modeling approach—ande® Randomly sample the dataset for « K « P points
its combination with the MECBR approach—is illustrated ~ that are not in the-neighborhood of positive exam-
in Figure 9. More details on the general approach can be Ples. Picki « P points for each primitive SVM run.
found in [NNTO5b] so we list only specific implementation
decisions here.

Performance of SVM classifiers can vary significantly
with variation in parameters of the models. To minimize
sensitivity to these design choices, we use the variance and
the trade-off parameters determined for each feature for the
TRECVID 2005 Concept Detection task. Radial basis func-
tion (RBF) kernels usually perform better than other ker-
nels, so our reported results use SVM with RBF kernel.e Cluster the dataset points using k-means algorithm into
The other two parameters, ratio between positive and neg- N clusters (with min number of items in each cluster
ative examples and number of learned SVM hyperplanes ( set toP). Remove the clusters where there are more

e Randomly sample the dataset for « K « P points
that are not in the-neighborhood of positive exam-
ples. Cluster the selected points using k-means algo-
rithm into N clusters (with min number of items in
each cluster set t® « P), and run the primitive SVM
run using each cluster as a pseudo-negative big.
will vary for each cluster. Varyv.
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than10% of positive examples. Pick” « P examples occurrence texture, and semantic model vectors. These 8
from one cluster at the time (initiaV varies for the runs were fused using simple non-weighted averaging of
query topic), and use them as a pseudo-negatives istatistically normalized scores (e.g., see [NNTO5b]). The
primitive SVM run. only twist was that all low-level features were fused first,

and the resulting ranked list based on visual features was
These approaches were tested£o¢10, andV between han fysed to the one based on semantic features. This was

10 and 50 for the TRECVID 2005 Search Task testinfhne so as to avoid bias towards the visual feature runs,

on the development set. The first and the third meth@ghich outnumbered the two semantic feature runs.
gave comparable results, while the second method under-

performed. This is not surprising, since using pseudo-

negatives from only one cluster can actually enable low §1.3 Model-based retrieval
lectivity in a high-dimensional feature space. We used tl
first approach for the final SVM-based visual runs due to
simplicity and consistent performance.

R)Fodel—based retrieval applies the results from off-line con-
'é%pt detection and text analysis to on-line queries by trig-
gering concept models with different weights. We have
devised a supervised and an unsupervised method for off-
Visual retrieval using MECBR. We used the multi- |ine index creation, both producing text-to-model correla-
example content-based retrieval (MECBR) approagBn indices that are used in the on-line query execution to
from [NS03b, NNTO5b] (see also Section 4.2.4) as a coroduce model-based rankings of shots. Both methods are
plementary approach to SVM for query topic modelingiata-driven and use corpus co-occurrence statistics to com-
While SVM works great when there is a sufficient numbgjute a mapping from terms in the speech transcript to names
of training examples, including negative examples, it c@f available models. The two approaches are illustrated in
learn only simple decision boundaries when given vepigure 10.
few positive and some pseudo-negative examples. Therhe supervised index creation step leverages a standard
decision hyperspace learned by SVM can therefore {g&t search engine to produce the text-to-models correlation
refined through a combination with a nearest-neighbex. We generate pseudo-documents for all ASR terms,
type of classifier modeling the immediate neighborhogger pre-processing the text with a stemmer and a phraser.
of the positive examples. The idea is that we would likgjven a shot and its corresponding ASR text, we extend the
to combine the recall of nearest-neighbor classifiers, Slffébudo-documents with each term’s co-occurring text. We
as MECBR, with the precision of discriminant classifiergjso add concept models from ground-truth concept anno-
such as SVM. The approach is illustrated in Figure 9. tations for the given shot to all of the pseudo-documents.
For more details of the two methods and the way thetext search engine indexes the documents and computes
combination hypothesis works, please see [NNTO5b]. Tire-|DF statistics for each term. We refer to the resulting
MECBR method used in the search task was identicaliMeX as a text-to-model correlation index.
the one described in the above paper and also to some eXyr unsupervised approach involves the creation of a
tent in Section 4.2.4. Specifically, unlike the concept dgsyi-to-model correlation matrix. After pre-processing ASR
tection task, in the search task we did not use any clustgikt with a stemmer and a phraser, we weight ASR terms
ing or sampling of the positive examples since their numlgfin models from automatic concept detection across all
was limited to begin with. The complete set of positive Vihots, The resulting correlations between ASR terms and
sual examples for each topic included all image examp'%érresponding concept models are aggregated in a matrix
if given, as well as up to 3 frames extracted from each of tBeterms to concepts. We refer to this resulting matrix also
given video segments. These frames were uniformly spaggg; text-to-model correlation index.
within the segment after stripping the 5 boundary framesqyeries are evaluated in an on-line step, which leverages

on both sides of the clip. Each example was then usggb of the off-line correlation indices to produce a model-
independently as a CBR query and results were fused ggzeq ranking of shots. Queries are analyzed in the same
ing OR logic (i.e., MAX aggregation of confidence scoreshanner as ASR text in the previous steps; a stemmer and
Other parameters (e.g., score normalization) were fixgdhnraser are used to resolve terms for matching query text
globally on a feature-dependent but query-independent Riexi-to-model correlation indices. In case of the super-
sis. The MECBR approach was used with four featuresgiged approach, the query text is evaluated using the search
global color correlogram, color moments grid, global cpgine, resulting in a confidence list of best-matched mod-
occurrence texture, and semantic model vectors. els and corresponding weights proportional to the returned
search engine scores. In the unsupervised approach, model
Fusion. The final visual-only run was a combinatiorconfidences are selected from the text-to-models correlation
of SVM-based and MECBR-based runs for 4 diffeindex for each query term and are then fused across query
ent features—color correlogram, color moments, cterms to produce overall query-model correlation weights.
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Figure 10: Overview of the model-based retrieval method, which applies the results from off-line concept detection and
text analysis to on-line queries by triggering concept models with different weights. The approach consists of an off-line
index creation phase and an on-line query expansion phase.

We then adjust and re-rank the resulting list of models andhen fusing multiple runs from the same modality or from
confidences for both approaches by evaluating the qudifferent modalities:

against a list of synonyms for models and boosting the
weights of models that were hit by the query. Given the fi-
nal list of query-relevant models and weights, we select the

most relevant: models with their corresponding weights, e Fusion of text runs only—we used non-weighted score
and fuse them using weighted average score aggregation to averaging of rank normalized scores.

generate a fina! rapked list of shots. The rgsulting model-, = sion of text and visual runs—we used round robin
bas_ed ranked list is then used to re_—rank I|_sts from other fusion by doing rank normalization followed by MAX
retrieval methods through an appropriate fusion method. score aggregation.

e Fusion of visual runs only—we used non-weighted
score averaging of statistically normalized scores.

e Model-based re-ranking of text runs—we used non-
weighted score averaging of rank normalized scores.

Our fusion approach for the search task was similar to thay, \odel-based re-ranking of visual runs—we used non-

of the concept detection task (see Section 4.3). However, \yeighted averaging of statistically normalized scores.
due to the lack of a training set for fusion parameter tun-

ing, we had to resort to globally tuned query-independente Fusion of text + visual + models—same as text+visual
fusion, as opposed query-class-dependent fusion methods fusion but using the model-based re-ranked text and
as in [KNCO5]. In particular, we used the following rules ~ Visual runs as inputs.

5.1.4 Multimodal Fusion and Reranking
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Figure 11: Mean Average Precision performance of IBMigure 12: Mean Average Precision performance of auto-
automatic search type A runs relative to other automatmatic and manual text-only required baselines.

type A submissions.

5.1.5 Experiments and Results

. . . t
We submitted 6 automatic type A runs for this year's Searq?ﬂ
Task, which are listed with their corresponding MAP scores

in Table 3 and in Figure 11.

novel approach leveraging two complementary light-weight
learners—modified nearest-neighbor and SVMs—to solve
e problem of visual query modeling with few examples.

e details of this approach can be found in [NNTO5b].
Another approach that worked very well for us was
model-based re-ranking and expansion of result lists gen-
erated by speech-based and/or visual-based retrieval. We

Run D Run Description MAP build SVM models for all 39 concepts that were annotated,
FA-LJW.T.7 Text 0.057 and used these models to generate a rank list for each quer
FA2JWTMG6 | Text + Models 0.070 9 query
EA2IWTVE Text + Visual 0106 based on how relevant each model was to the query text. We
FAiziJwiv 3’ V(_ax I Isua 0'110 measured query-to-model relevance using two approaches,
it ISua : combing corpus-based co-occurrence of ASR terms and
FA2JW.VM.4 | Visual + Models 0.119 1 models, along with model synonym-based query expansion.
FA2JWTVM.2 | Text + Visual + Models| 0.119|  hg final model-based ranked result list was then fused with

) i ranked lists generated by other retrieval methods so that the
Table 3: Mean Average Precision scores for all IBM auto- : ) .

. s other lists are effectively re-ranked based on the weights of
matic search submissions.

the most relevant models for each query. Model-based re-
For speech-based retrieval, we used only the requilr&[fk'ng improved upon the text-only baseline by over 20%

ASR/MT transcripts and experimented with several diffe@, ﬁ MAPloJAXiS?C;. Oltlfslasoblead to Eur top 2 T“”SI (bolth
ent approaches for automatic query refinement. These Wit equal of 0.119) by re-ranking our visual-only
t+visual runs, improving them by 8% and 12%, re-

cluded query expansion based on pseudo-relevance f@é}ﬁj— te_:x
back, lexical affinities, as well as automatic detection aﬁaectlvely.
expansion to over 100 semantic categories developed orig-
inally for question answering purposes. While our text 2
based run performed competitively relative to other text-
only submissions (it was 4th out of 11 comparable submiBie IBM Marvel Multimedia Analysis and Retrieval Sys-
sions and well above the mean and the median)—we géam was used for our interactive search run. Marvel pro-
erally found the text modality to be much less reliable thidgdes search facilities for content-based (features), model-
year due to the effects of machine translation for foreidgi@sed (semantic concepts) and text-based (speech terms)
sources. This run had our lowest Mean Average Precisiguerying.
of 0.057 and its performance relative to all automatic andMarvel allows users to fuse together multiple searches
manual text-only baselines is shown in Figure 12. within each query, which was typically done for answering
The highlight of our system this year was our visual-onthe TRECVID query topics. For example, given the state-
run, which performed nearly twice as well as our text-oniyent of information need and query content, the user would
baseline (MAP of 0.110), and outperformed all automatigpically issue multiple searches based on the example con-
type A submissions by other participants as well as 26 teht, models and speech terms. In many cases, the results
the 28 manual submissions. For this run, we exploredram an automatic run were used to kickoff the interactive

Interactive Search
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Figure 13: Marvel multimedia analysis and retrieval system
used for interactive search (results for qry158). [FLO4]

search. Figure 13 illustrates the Marvel multimedia analy-
sis and retrieval system. An on-line demo of the system can

be accessed from http://www.research.ibm.com/marvel/.[HKM 99|

6 Observations and Future Direc- [3.05]
tions

[Jap00]
We experimented with a number of new techniques in the
context of TRECVID 2005. For the detection task, we ob-
served robust performance with the baseline support vector
learner and were able to improve upon its performance us-
ing an ensemble of other generic learning techniques res y57]
ing in top performance. For the search task, we were able to
automatically leverage for the first time, models as well gB104]
model vectors along with our existing bank of features. We
were also able to leverage for the first time through the IBM
UIMA Text Analytics components, various text analytics
and processing functionalities that when combined with our
low-level and high-level visual features and models resul{'ﬁ@coa
in the top performing automatic Type A search runs. We
working to improve upon the new directions including bet-
ter leveraging of models as well as learning models across
granularities. We also plan to work on improving our inter-
active search capabilities so that it can fully and efficientylLP98]
expose our analytical capabilities at search run time with
minimal onus on the human in the loop.
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