
1 

Imperial College at TRECVID 
Rui Jesus*, João Magalhães+, Alexei Yavlinsky+, Stefan Rüger+ 

(rjesus@deetc.isel.ipl.pt, j.magalhaes@imperial.ac.uk, a.yavlinsky@imperial.ac.uk, 

s.rueger@imperial.ac.uk) 

+Department of Computing 
Imperial College London, South Kensington Campus 

London SW7 2AZ, UK 

*Departamento de Engenharia Electrónica 
Telecomunicações e Computadores 

Instituto Superior de Engenharia de Lisboa 
Lisbon, Portugal 

Abstract 

We describe our experiments for the shot boundary detection, high-level feature extraction and search. 
In the shot boundary detection task, we employ our proven method based on the calculation of 
distances between colour histograms of frames over a range of timescales. For the search task, we tested 
a different system. This year, content based search is complemented with a new relevance feedback 
method. Results of one interactive run are presented to evaluate the performance of the new system. In 
the high-level feature detection task we tested two new methods: naïve model and non-parametric 
density estimation. We evaluated these models with all keywords. 

 

1 Introduction 
The retrieval system we use for the search tasks is functionally similar to that used for TRECVID 
2004 (Heesch et al., 2004) but with a different relevance feedback method. The search process is 
based on global and tiled image features. Like last year, we use colour and texture features but we 
have not modelled the motion aspect in video. One interactive run is carried out to test whether 
the use of the new relevance feedback method improves performance of the search. 

In the high-level feature detection task we tested two new methods: naïve model and 
nonparametric density estimation. The set of low-level features we used are similar to the ones we 
use for the search task. 

The paper is structured as follows. Section 2-4 describes, respectively, the experiments and results 
for the shot boundary detection task, the search task and the high-level feature detection task. 

2 Shot-Boundary Detection Task 

2.1 System 

The video shot boundary detection algorithm is broadly based on the colour histogram method. 
The colour histograms for consecutive frames are compared and a shot change is declared if their 
difference is greater than a given threshold. This method is extended based on the algorithm of 
(Pye, Hollinghurst, Mills, and R.Wood, 1998) for detection of gradual transitions that take place 
over a number of frames, and for rejection of transients such as the effect of a flash-bulb. In order 
to determine the start and end points for gradual transitions, we employ a method similar to that 
described by (Zhang, Kankanhalli, and Smoliar, 1993), in which a lower threshold is used to test 
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for the start and end of a gradual transition. Our system is largely unchanged from the last three 
years, and more details can be found in (Pickering, Heesch, O'Callaghan, Rueger, and Bull, 2002). 

2.2 Experiments and Results 

We performed ten shot boundary detection runs. The first four runs, Imperial-01 - Imperial-04 
were carried out keeping the low threshold, T4, constant, and reducing the high threshold, T16. In 
runs Imperial-05 - Imperial-08, the low threshold was increased and the same 3 values for the high 
threshold were used again. The last two runs, Imperial-09 and Imperial-10 used a value for the low 
threshold falling between the first set of runs and the second set, and a high and low value 
respectively for the high threshold. The thresholds for these last two runs were determined 
empirically from previous year's TREC results. 

All Cuts Gradual   

Recall Prec Recall Prec Recall Prec F-Recall F-Prec 
Imperial_01 0,755 0,815 0,830 0,813 0,536 0,822 0,907 0,223 

Imperial_02 0,766 0,803 0,831 0,803 0,577 0,800 0,906 0,237 

Imperial_03 0,770 0,784 0,828 0,788 0,601 0,768 0,905 0,238 

Imperial_04 0,769 0,739 0,825 0,752 0,604 0,692 0,905 0,241 

Imperial_05 0,804 0,789 0,856 0,805     0,655 0,731 0,858 0,641 

Imperial_06 0,818 0,766 0,856 0,793 0,705 0,683 0,846     0,656 

Imperial_07 0,826   0,733 0,855 0,769 0,740 0,632 0,839 0,657 

Imperial_08 0,826 0,690 0,852 0,725 0,748 0,595 0,841 0,610 

Imperial_09 0,806 0,779 0,847 0,794 0,686 0,727       0,884 0,480 

Imperial_10 0,815 0,749 0,846 0,774 0,725 0,675 0,878 0,487 

TRECVID Median 0,851 0,796 0,922 0,842 0,701 0,660 0,772 0,717 
Table 1 - Shot boundary detection task - results summary. 

We show the results for our ten shot-boundary detection runs in Table 1. There was a predictable 
trade-off between recall and precision as the thresholds were altered. Runs 5, 6 and 9 gave 
particularly good points at the top right of the precision-recall graphs. 

In addition we measured the clock time for each run to get an indication of the efficiency. A run 
consisted of processing all of the 12 test files by a single system variant. The only differences 
between each of the runs were the threshold settings. Therefore the total time for each run was the 
same, approximately 20000 seconds. The timing runs were performed on a Pentium 4, 3.00GHz. 

3 Search Task 

3.1 Graphical user interface 

We have consolidated the paradigms of text-based search, content-based search with relevance 
feedback and temporal browsing into a unified interface. By providing tight integration of 
techniques and a rich set of user interactions, we aimed to equip the user with substantial 
navigational power. 
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Figure 1 shows the interface layout with one image selected in the search panel. This image is 
displayed with a red border. The user formulates a query using the left hand panel. Below we 
outline the stages of the searching process: 

 
Figure 1 - Initial search result with temporal browsing for the topic “basketball players on the 

court”. 

Initial query formulation: query text and images are loaded as per topic and modified as 
necessary. Initially, by default the system use only text features but the user can modify manually 
the appropriate pop-up menu and use visual features too. 

Browsing of search results: results are returned in a line-by-line page-wise fashion that is 
common for search engines, with the most relevant image in the top-left corner, and the least 
relevant in the bottom-right corner. This traditional approach is simple, intuitive and makes 
maximum use of the available space, helping the user to assess the relevance of many images 
quickly and use them in the search query if required. In this way, we maximise feedback from the 
user in the searching process. 

Relevance feedback: the search process is divided in two phases. In the first phase, the user is 
able to modify the query text and the image features, and search again to collect relevant and non 
relevant images. When the user has a good number of relevant images, he can decide to enter in 
the second phase of search. The system use the images collected to train the Regularized Least 
Squares Classifier (RLSC) to perform a binary classification on the database (Jesus, Abrantes, and 
Marques, 2005). Then, the output of the classifier is used to select a set of images to display (Jesus, 
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Abrantes, and Marques, 2005) and the system asks the user to give his feedback. This information 
is included in the previous training set and the classifier is retrained. This process is repeated 
several times.  

Temporal Browsing: at the bottom of the window, temporal browsing is provided using a fisheye 
visualisation. This allows the user to effectively combine temporal browsing with searching. Once a 
user has located a relevant image, browsing along the temporal neighbours of that image often 
yields further relevant images. 

 
Figure 2 - Display of the images obtained in the first iteration of relevance feedback (15 images 

most relevant and 15 most informative). 

Figure 2 shows the interface in the second phase of the search process for the topic “Condoleezza 
Rice”. The displayed images were obtained by the output of the RLSC. The first fifteen images are 
the most relevant and the other fifteen images are the most informative according to the RLSC.   

3.2 Features 

For the search task we used 4 low-level texture and colour features as well as the text from the 
LIMSI transcripts. Like last year, we cut of the bottom of each image as this often contained a 
news line. To capture local image information, we partition the images into tiles and obtain features 
from each tile. The final feature vector consists of a concatenation of the feature vectors for 
individual tiles. For features we used last year's TRECVID, see (Heesch et al., 2004). 
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Tamura Features - We compute the three Tamura features coarseness, contrast and directionality 
as proposed in (Tamura, Mori, and Yamawaki, 1978) for each of 9x9 = 81 tiles. For each pixel we 
compute the values of each of the three features and compute for each tile a 3D histogram. See 
(Howarth and Rueger, 2004) for additional details and evaluation results. 

Gabor Filter - One of the most popular signal processing based approaches for texture feature 
extraction is the use of Gabor filters. These enable filtering in the frequency and spatial domain. A 
range of filters at different scales and orientations allows multichannel filtering of an image to 
extract frequency and orientation information. This can then be used to decompose the image into 
texture features. Our implementation of the Gabor filter is based on (Manjunath and Ma, 1996). 
To each image we apply a bank of 4 orientation and 2 scale sensitive filters that map each image 
point ( ),I a b  to a point in the frequency domain: 

( ) ( ) ( ), , ,nm mnW a b I a b g x a y b dxdy= − −∫  

The feature consists of the mean and standard deviation of the modulus of Wnm . Since different 
filters produce outputs in different ranges, we normalize both mean and standard deviation by 
dividing by the respective standard deviation obtained for the entire database. We use a tiling of 
3x3 based on experiments previously carried out on the Corel collection (Howarth and Rueger, 
2004). 

RGB color Histogram - Each image is represented by its color histogram with 256 bins. 

Marginal HSV colour Moments – For this descriptor, we formed individual histograms for each 
of the three colour channels and computed the mean and second central moment of each marginal 
colour histogram. 

Bag-of-Words Feature - The text feature was derived by aligning LIMSI ASR transcripts, closed 
caption data, and OCR data provided by Alexander Hauptmann's group at CMU. Using this textual 
annotation, we computed a bag-of-words feature consisting for each image of the set of 
accompanying stemmed words (Porter's algorithm) and their weight. This weight was determined 
using the standard tf-idf formula and normalised so that the sum of all weights is 1. As this is a 
sparse vector of considerable size (the number of different words) we store this feature in the form 
of (weight, word-id) pairs, sorted by word-id. 

3.3 Experiments and Results 

In the search task we conducted the following experiments: 

Interactive runs: One interactive run were carried out. In this run, the users were invited to use 
content-based search with relevance feedback to retrieve relevant images to the query. 

Block design: With a total of four users, 24 topics and one system variants, we chose an 
experimental design that required each user to execute a total of 6 queries. 

The results for the interactive are shown in Table 2. This year we present a different system but the 
results were very close to the system presented in the last year (MAP = 0.200).  
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System Variant MAP 

Interactive: Search 0.209 

TRECVID Interactive Median 0.226 

TRECVID Interactive Max 0.498 

TRECVID Interactive Best Run 0.414 
Table 2. Search task results for the interactive run averaged over all 24 topics 

4 High-level Feature Detection Task 
For the high-level feature detection task we evaluated three new methods.  

4.1 Naïve Model 

As an alternative to learning the models of the concepts in a high-dimensional feature space, we 
‘mine’ the feature space for salient information. Instead of estimating complex concepts with few 
data we aim at mining the full dataset for its natural patterns (salient clusters) and then learn the 
causality relation between these natural patterns co-occurrence and the (salient) concepts, see 
(Magalhães and Rüger, 2005). The algorithm is divided into the following tasks: 

1. Features Pre-Processing: Process the features, by removing non-relevant features, 
combining redundant ones, and normalizing them. In this model we use Tamura, Gabor 
and marginal HSV features. The features are described in the search task section. 

2. Feature Space Density Model: We use an unsupervised learning algorithm (producing a 
Gaussian mixture model) to detect salient clusters in the feature space, see (Figueiredo 
and Jain, 2002). 

3. Learning Cluster-Keyword Models: The previous step was used to create a set of clusters 
that will be related to the concepts through generalized linear model. 

Each component of the finite-mixture density model captures a pattern of the feature space and 
therefore a pattern that exists in certain groups of documents. Our model follows a typical 
generalized additive model comprised by sum of weighted basis functions, see (Hastie, Tibshirani, 
and Friedman, 2001). The formal expression of this model will be: 

( ) ( )| logit |
ij c i

i

p w x p c xβ
⎛ ⎞⎟⎜= ⋅ ⎟⎜ ⎟⎟⎜⎝ ⎠∑ , 

The variable |i jc wβ  is the weight of the component ci given the keyword w. The weights 
icβ  fall in 

the interval ] ],1−∞  and [ [1,+∞ , which is why the ( )logit x  function is used: it plays the role of 
returning a value with a probabilistic meaning. Note that ( )|ip c x  is independent of the training 
keyword and only the |i jc wβ  weights are dependent of training keyword. 

A method to compute the linear model weights is based on a proportion between positive and 
negative examples. The estimation of the 

icβ  weights is given by the expression: 
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Note that the |ic wπ  weights fall in the interval [ [1,+∞  when the component is more relevant for 
the positive training samples and fall in the interval ] ],1−∞  when the component is more relevant 
for the negative training samples. 

4.2 Nonparametric Density Estimation 

We evaluated an approach to automated image annotation described in (Yavlinsky, Schofield, and 
Rüger, 2005) on this year’s TRECVID feature detection task, where each high-level feature is 
treated as a keyword. We describe this approach briefly below. Denote a keyword as w and a 
keyframe image feature vector as x. The posterior probability of w given x can then be computed 
as 

( | ) ( )
( | )

( )
f x w p w

p w x
f x

= . 

The density in the feature space conditional upon the assignment of a particular keyword, f(x|w), is 
estimated using a nonparametric technique known as ‘kernel smoothing’. Where x is a vector 
(x1,…, xd) of real-valued image features, we define the kernel estimate of f(x|w) as 

( )
( )

( )1
( | ) ;

i
w

n
i

w x T

f x w k x x h
T

∧

∈

= −∑ , 

where (1) ( )... nx x is the sample of images with label w in the training set Tw, where k is a kernel 
function that we place over each point ( )ix . We used the following kernel in our experiments: 

1

1
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where ( )it x x= − . We set each bandwidth parameter hl by scaling the sample standard deviation 
of feature l by the same constant λ, computed previously using a cross-validation approach on a 
different dataset. The prior is defined as 

1
( )p w

W
= , 

where |W| is the size of the vocabulary. We use a uniform keyword prior because we do not 
assume that the relative frequency of keywords in the training set is indicative of the true 
probability with which those keywords would be observed. Finally, we make the approximation 
( ) ( | ) ( )

w
f x f x w p w= ∑ for simplicity. For a given keyword the images are ranked according 
their posterior probabilities of that keyword. 

4.3 Experiments and Results 

We evaluated the three models with all high-level features. The used low-level features weren’t 
always the same; the naïve model only used global low-level features of each key-frame; the 
nonparametric density model used tiled Tamura features and tiled marginal HSV moments (3x3) 
and the global Gabor filter. Neither models used text, audio or video information. 

The naïve model performance is low given the systems that participated in TRECVID. It was 
expected to have an average performance with this model (Magalhães and Rüger, 2005): the 
mixture model of the entire dataset constitutes a generalization step, which loses information 
useful to discriminate between classes. Furthermore, we encountered several problems running this 
model in TRECVID dataset. Because the dataset grew in size this year, we couldn’t run the mixture 
modeling with a large number of clusters as the algorithm requires, and we couldn’t use tiling since 
it would increase exponentially the number of samples. For these reasons we had to run the model 
with serious limitations which is now reflected in the low performance illustrated by Figure 3. 

 
Figure 3 – Naïve model: run score (dot), versus median  (---) versus best (box) by feature. 

The nonparametric model achieves competitive performance (see Figure 4), which can be 
attributed to the fact that it retains as much information about the keyword distributions within the 
training set as possible. This result also reinforces the finding in (Yavlinsky, Schofield, and Rüger, 
2005) that global features are suitable for automated image annotation. 
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Figure 4 – Nonparametric density estimation: run score (dot), versus median (---) versus best 

(box) by feature. 

Feature Nonparametric density 
estimation 

38 People walking/running 16,59% 

39 Explosion/fire 7,77% 

40 Map 46,86% 

41 US flag 8,79% 

42 Building exterior 32,91% 

43 Waterscape/waterfront 30,77% 

44 Mountain 30,00% 

45 Prisoner 1,38% 

46 Sports 15,91% 

47 Car 27,39% 

Mean Average Precision 21,84% 
Table 3 – Retrieval evaluation measures of the three models. 

5 Conclusion 
The new relevance feedback algorithm, Regularized Least Squares Classifier, proved to be as 
efficient as last year’s algorithm. As was expected, text was fundamental to reach the observed 
MAP. 

In the high-level feature detection task, we tested two simple methods. Unfortunately we 
encountered some practical problems with the naïve model which then caused a poor 
performance. Using kernel smoothing to model collaboratively annotated training data with only 
simple visual features achieves competitive performance (mean average precision 0.22 across all 
topics). 
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