TRECVID 2005 Experiments at MediaTeam Oulu

Mika Rautiainen, mika.rautiainen@ee.oulu.fi

Matti Varanka, Ilkka Hanski, Matti Hosio,
Anu Pramila, Jialin Liu, Timo Ojala and Tapio Seppänen

MediaTeam, Departm. of Electrical and Information Engineering
University of Oulu, Erkki Koiso-Kanttilankatu 3,
4SOINFO, 90014 University of Oulu, Finland
Overview

1. System Overview
2. Experimental Setup
3. 2005 Results
4. Conclusions
Three search paradigms for retrieval with our video retrieval and browsing system (VIRE):

<table>
<thead>
<tr>
<th>I Text</th>
<th>Find named people, locations or events. Example: Find shots about the inauguration of Bill Clinton in front of the White House</th>
</tr>
</thead>
<tbody>
<tr>
<td>II Concepts</td>
<td>Find common concept objects, events or scenes. Example: Find shots about birds flying in the sky</td>
</tr>
<tr>
<td>III Visual Examples</td>
<td>Find other video clips that look similar to this clip. Example: Find all occurrences of this analgesic advertisement in a month’s recordings</td>
</tr>
</tbody>
</table>

Textual Description t_{text}

Concept Search Engine

Visual Search Engine

Fusion Method

Final Result F^t

Search Topic Definition t

Concepts 1..C

Visual Examples 1..K

Text features

Concept Features

Visual Features

Expert Results S^t

Text Search Engine

L^t
Visual Features

- **Color**
 - **Temporal** Color Correlogram (TCC), spatial color occurrences, 432 values
 - \(\tilde{\gamma}^{(d)}_{c_i, c_j}(S) \equiv \Pr_{p_1 \in D^m_{c_i}, p_2 \in D^m_{c_j}} \, \left| |p_1 - p_2| = d \right| \)

This year, we computed low-level features from single subshot key frames instead of temporal domain due to computational reasons.
Dissimilarity by color or structure is defined as a Manhattan distance between the feature vector values.

Fusion of low-level similarities for one example query

\[r^t(k, n) = \text{sum}\left(\frac{d^t_1(k, n)}{D^t_{1\text{max}}(k)}, \ldots, \frac{d^t_L(k, n)}{D^t_{L\text{max}}(k)}\right) \]

Combining features using SUM of ranks works well for features having different dimensionalities [10].

Combining results from \(K \) examples

\[v^t(n) = \text{min}\left(\frac{r^t(1, n)}{R^t_{\text{max}}(1)}, \ldots, \frac{r^t(K, n)}{R^t_{\text{max}}(K)}\right) \]

Using MIN of ranks is more flexible than average when heterogeneous query example sets are provided.
Semantic Concept Detectors:

Three different approaches were used in detectors

1. SVM:
 - Entertainment(af+linr.), Outdoor(vf+linr.), Newsroom(vf+linr.), Desert(vf+linr.), Snow(vf+linr.), Natural disaster(vat+2poly)

2. Propagated labelling with selected example queries [6]:

3. Cascade learning algorithm (Adaboost) [15]: Faces
 - Concept confidences were based on the shot’s relative rank given by the detectors
 - SVM: sigmoid-based probabilistic estimate
 - Labelling: nearest neighbours (ranks)
 - Cascade learning: number of detected faces
Text Search

- Text index from ASR and MT transcripts (NIST & CMU)
 - Indexes created from the transcripts w/pre-processing
 - Re-formatting the source transcripts for our system
 - Stop word removal and Porter stemming
 - Inverted document indexes that are expanded using speaker segmentation boundaries and prioritization
 - ASR texts were patched with closed captions text

- Textual similarity between query text and a video shot
 - Value of temporal closeness of a shot to the actual query terms
 - Aggregated with a variation of TFIDF measure
 \[L(queryterm, s) = 0.2 \cdot \frac{\log(t + 1)}{\log(dl + 1)} \cdot \log\left(\frac{N}{m}\right) + e^{-B\frac{J}{J}} \]
 - Ratio of matching words in a shot
 - Inverse freq. of the matching shots
 - Temporal weighting based on prioritization

Mika Rautiainen, TRECVID 2005
Feature Indexes and Fusion

Query example(s)
Query keywords:
- Michael Jordan
Query concept:
sports

feature indexes
ranked result set

Visual
Concepts
Text

Result Set Fusion

\[f^t(n) = \text{sum} \left(\frac{w^v v^t(n)}{V_{\text{max}}}, \frac{w^s s^t(n)}{S_{\text{max}}}, \frac{w^l l^t(n)}{L_{\text{max}}} \right) \]

Finally, \(X \) top-ranked results \(F \)
The Search System Interfaces

- **Query Tool**: Creating Manual Queries
- **Result Container**: Selected Results and Relevance FB
- **Cluster-temporal Browser**: Interactive content-based navigation
Query Tool

Query Definition

Retrieved results are here
Cluster-temporal Browser

Selected video broadcast timeline

Automatically generated view of similar video segments in the 60 hour video database
Quick Buttons for Streamlined Interaction

- Play Shot
- Browse News Video

Select as a result and move to Result Container
Result Container: Relevance Feedback based on selected results

Selected relevant items go here

Here system returns more results based on selected items
MediaTeam participated in manual and interactive search tasks with following 7 runs:

- **OUMT_I1Q_1**: interactive with *browsing disabled, expert* users
- **OUMT_I2B_2**: interactive with *browsing enabled, expert* users
- **OUMT_I3Q_3**: interactive with *browsing disabled, novice* users
- **OUMT_I4B_4**: interactive with *browsing enabled, novice* users
- **OUMT_M5T_5**: manual text search with official text transcripts
- **OUMT_M6TS_6**: manual text search + semantic concepts
- **OUMT_M7TE_7**: manual text search + visual examples
Total of eight test users did

- **12 test topics** using **two different system configurations**
- enjoyed break and refreshment after six topics and spent about three hours in total for this experiment

- **four users were experts**
 - very knowledgeable with the system, but had not seen the given search topics or any content from the test database.

- **four users were novices**
 - mainly information engineering undergraduate or post-graduate students, having good skills in using computers but little experience in searching video databases.

Search configuration:

- **I1Q**: Variant A: S1[149-154], S3[155-160], S2[161-166], S4[167-172]
- **I2B**: Variant B: S2[149-154], S4[155-160], S1[161-166], S3[167-172]
- **I3Q**: Variant A: S7[149-154], S5[155-160], S6[161-166], S8[167-172]
- **I4B**: Variant B: S8[149-154], S6[155-160], S5[161-166], S7[167-172]
Results

<table>
<thead>
<tr>
<th>Search Run ID</th>
<th>MAP</th>
<th>Total Relevant Shots Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1Q (interactive, expert users)</td>
<td>0.264</td>
<td>2284</td>
</tr>
<tr>
<td>I2B (interactive, expert users)</td>
<td>0.242</td>
<td>1916</td>
</tr>
<tr>
<td>I3Q (interactive, novice users)</td>
<td>0.202</td>
<td>1907</td>
</tr>
<tr>
<td>I4B (interactive, novice users)</td>
<td>0.226</td>
<td>1998</td>
</tr>
<tr>
<td>Mean (interactive)</td>
<td>0.218</td>
<td>1618</td>
</tr>
<tr>
<td>Max (interactive)</td>
<td>0.414</td>
<td>3044</td>
</tr>
<tr>
<td>M5T (baseline text search)</td>
<td>0.081</td>
<td>1836</td>
</tr>
<tr>
<td>M6TS (txt search+semantic)</td>
<td>0.097</td>
<td>2003</td>
</tr>
<tr>
<td>M7TE (txt search+examples)</td>
<td>0.102</td>
<td>1972</td>
</tr>
<tr>
<td>Mean (manual)</td>
<td>0.067</td>
<td>1510</td>
</tr>
<tr>
<td>Max (manual)</td>
<td>0.169</td>
<td>2278</td>
</tr>
</tbody>
</table>
Conclusions

- Interactive runs
 - **12% better** MAP-performance for **novice** users using **cluster-temporal browser** than without it
 - The result is in line with previous reported experiments with novice test users [5].
 - However, expert users had marginally better MAP (0.264 vs 0.242) without the Cluster-temporal Browser, why?
 - Expert knowledge about system capabilities and limitations makes them perform well with every configuration. Also personal skills vary depending on the role in development
 - on average expert users had **18% better search performance over novice users**
 - It shows that the test design has a significant effect to the outcome of the interactive test.
Conclusions

- Manual runs:
 - text + semantic concept search gives about **19% better performance than text baseline**
 - text + example based search gives approximately **25% performance gain over the baseline**.
 - The results show that specific visual search examples accumulate better overall precision than the queries defined with our detected set of semantic concepts.

Mika Rautiainen, TRECVID 2005
www.mediateam.oulu.fi
Main conclusions from this study:

- **Cluster-temporal browsing improves search performance** over traditional query + relevance feedback paradigm for **novice** users
- content-based example and concept search components **improve search performance** over straightforward text-based search
 - search examples seem to contribute more than concepts in our system
- The setting for interactive experiment is an important factor in the overall search performance
 - The expert users are able to ’push’ the system limits and obtain good performance in both configurations.
Thank you

- mika.rautiainen@ee.oulu.fi