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1 Introduction

This year, the joint team of UCF and the University of Mod-
ena has participated in the following tasks: (1) shot bound-
ary detection, (2) low-level feature extraction, (3) high-level
feature extraction, (4) topic search and (5) BBC rushes man-
agement. The shot boundary detection was contributed by
the Image Lab at the University of Modena. The other tasks
were performed by the Computer Vision Team at UCF.

1.1 Shot Boundary Determination

This is done by the Image Lab at the University of Mod-
ena. The results submitted to NIST have been obtained
using frame based comparisons to detect if the difference
behavior over time resembled that of a linear transition. Us-
ing this approach we can detect with the same algorithm
cuts, linear dissolves and wipes, and part of many graphi-
cal effects. The distance between frames employed is based
mixed pixel and histogram based. For the pixel based, we
used the sum of squared distances on the Y channel, while
for histograms theχ2 distance was used. Two parameters
need usually to be tuned:Peekn

w and errn
w. The second

one was not used in the TRECVID2005 experiments, since
it didn’t add much to the precision, sometimes reducing re-
call rate, in contrast with what observed on Formula1 video
sequences which are much more regular. In fact it reports
how well the measure shape fits the linear model, so usu-
ally causes problems on the non linear transitions. To get
the different runs, we simply changed the peek coefficient
value in the equation:

Peekn
w · CPeek > 1. (1)

The formula is written this way, because also the error
part was contributing to the total. Of course in this way, we
are just thresholding the peek value.

runid CPeek

TRECVID2005 UNIMORE26 0.00026
TRECVID2005 UNIMORE27 0.00027
TRECVID2005 UNIMORE28 0.00028
TRECVID2005 UNIMORE29 0.00029
TRECVID2005 UNIMORE30 0.00030
TRECVID2005 UNIMORE31 0.00031
TRECVID2005 UNIMORE32 0.00032
TRECVID2005 UNIMORE33 0.00033
TRECVID2005 UNIMORE34 0.00034
TRECVID2005 UNIMORE35 0.00035

Changing the threshold value allowed us to move along
the recall/precision curve, but no significant difference was
observed between runs. Probably the value should have
been changed by a larger amount.

Based on this results, it is clear that the initial hypothe-
sis of linear transition is a bit too strong for general video
material, because the obtained results are lower than ex-
pected on the transition. Looking at the videos, we observed
that many “special effects” were missed. On the contrary
searching for the best transition position and length allowed
to fine tune around cuts, proving particularly effective.

Lessons learned: a flash detector is needed for news
videos; our estimated transition length was too conserva-
tive and obtained extremely high precision, at the cost of
recall. This is not a matter of thresholds, since it is the out-
put of an optimization procedure and is not influenced by
anything else but the data. We need to speed up the detec-
tion, probably by including some early stop conditions in
the optimization. The detailed description of the proposed
method is in Section 2.



1.2 Low-Level Feature Extraction

The detection of the motions is based on the analysis of
the homography transformation and the fundamental matrix
between two consecutive frames. We have submitted four
runs:

1. VISION1: ranked results using the global displace-
ment, motion continuity and the period of the motion.

2. VISION2: ranked results using the global displace-
ment only.

3. VISION3: ranked results using the global displace-
ment and the motion continuity.

4. VISION4: ranked results using the motion continuity
and the period of the motion.

The major contribution of our system is that, the system
is able to distinguish the 2D motions caused by 3D cam-
era rotations (pan/tilt) from the ones caused by 3D camera
translations (track/boom). The detections of pans and tilts
are based on the analysis of the homography transforma-
tions of the images, while tracks and booms are detected by
analyzing the epipolar geometry of the images. The detailed
description of the proposed method is in Section 3.

1.3 High-Level Feature Extraction

The task of high level feature extraction has been imple-
mented using three approaches. First method was based
on global features that were subdivided into fixed sized
patches. . This technique exploits consistent appearance
of similar patches in a specific part of the image. This tech-
nique was useful for detecting features that occupy most
of the image and had a lot of in-class variation, such as
mountain, building, waterscape, and sports. This technique
used the spatial constraint of the local features for high
level feature detection but it has certain limitations. This
includes the problems due to the change in camera orien-
tation and zoom, partial occlusion of features, etc. Second
approach was based on local features of image segments.
This technique was useful for detecting features that had a
certain structure but still had in-class variation, such as ex-
plosion/fire, map, US flag and car. The effectiveness of this
technique was dependent on the quality of image segmen-
tation. Over-segmentation (too many segments) was pre-
ferred over under-segmentation (very few segments) as two
different regions with very similar features should have very
close feature points. On the other hand under-segmentation
might fuse two actually different regions together into one
segment with a common feature vector. This problem had
been observed in some tests and might have a bad influence
on the results. Third approach used feature points and patch

appearance similarity. This method was useful for the fea-
tures that have a consistent appearance signature and with
small in-class variation, such as US flag. The rest of the fea-
tures had diverse appearance; hence can not be detected by
using patch similarity. Using these methods, results were
submitted for all features except people walking/running.
Please refer to Section 4 for the detailed description of the
proposed method.

1.4 Topic Search

The search system, PEGASUS, is implemented with four
components: ASR, OCR, global histograms of the key-
frames and the high-level semantic lexicons.

1. UCFVISION1: run based only on ASR.

2. UCFVISION2: run based on ASR, OCR, global his-
togram and high-level features.

Based on the evaluation results, the interactive run using
multi-modalities performs better than the one using only the
ASR information. For the second run, we have achieved
median performance among all the runs. The search base-
line was provided by the search on the ASR. The other fea-
tures expanded the baseline with more positive returns, and
the interactive mechanism allows the user to refine the query
and improve the performance. The detailed description of
the proposed method is in Section 5.

2 Shot Boundary Determination

Automatic tools for video segmentation and annotation are
the chimera of all digital video library management sys-
tems. The goal is to find automatic and general procedures
to segment videos into blocks and to annotate them with
textual data or with metric information that could be useful
for further indexing, querying, summarization, fast brows-
ing and so on.

In this paper, we propose a new two steps iterative algo-
rithm, which relies on a linear transition model, able to iden-
tify transition center and length. Our approach is strictly
focused on gradual transitions with a linear behavior, in-
cluding abrupt transitions. A precise model is exploited al-
lowing achieving more discriminative power than general
techniques. We developed an iterative algorithm that, given
a frame of possible transition, alternatively tries to find to
best center position for the transition and the best length, by
minimizing an error function, which measures the fitness of
data to the linear model.

Before describing our algorithm in detail, it is useful to
define the ideal model of linear transition and to underline



its important properties. These will be exploited by the al-
gorithm to cope with non idealities and to measure the con-
fidence of the detection.

2.1 The Transition Model

Let’s consider two consecutive shots in a video sequence,
the first one ending at framee, and the second one starting
at frames, with e < s. If s = e + 1 we have an abrupt
cut, otherwise there are some frames of gradual transitions
betweene ands.

To design a shot segmentation algorithm, two assump-
tions must be done: the first one is that a featureF (t) is
computable for each frame at timet, with the characteristic
of being discriminating and almost constant within the shot;
ideally

F (t) = F (e) , ∀t ≤ e
F (t) = F (s) , ∀t ≥ s
F (e) 6= F (s)

(2)

The second assumption is that a distance function exists
in the feature spaceΦ: d : Φ × Φ → R, which shows a
constant behavior during the transition. Ideally:

d (F (t) , F (t− 1)) = c e < t ≤ s (3)

Sometimes there is confusion on the definition of length
of a transition, because one may include in the count the first
frame of the new shot after the transition (e.g. [1]), or the
last one of the previous one. In our model, the length is the
number of frames in which the transition is visible, that is
L = s−e−1. Note that this model includes in the definition
of transition abrupt cuts too, as transitions with lengthL =
0. The transition center is defined asn = (e + s)/2 and
may correspond to a non-integer value, that is an inter-frame
position. This is always an inter-frame position in case of
cuts.

Differently from other difference metric formulations,
instead of computing the difference between the frames
F (i) andF (i + w), with w being theframe-step, we cal-
culate a metricMn

w centered on frame or half-framen, with
2n ∈ N, and with frame-step2w ∈ N. It is defined as:

Mn
w =





d [F (n− w) , F (n + w)] n + w ∈ N
1
2

[
M

n− 1
2

w + M
n+

1
2

w

]
otherwise

(4)

The second term of the expression is a linear interpola-
tion adopted for inter-frame positions. This is necessary
because the featureF is relative to a single frame and
cannot be computed at half-frames. The reason for ex-
pressing the metric asd [F (n− w) , F (n + w)] instead of
d [F (n) , F (n + 2w)] will be explained in section 2.2.2.

Figure 1: Values ofMn
w for an ideal linear transition with

L = 5 at varyingw.

Figure 2: Trapezoidal shaped functionψn
w,L (i; b, h)

In Fig. 1 we see an example of an ideal linear transition
with L = 5, from a shot with white pixels to one with black
pixels. If the transition is perfectly linear according with
the hypothesis of Eq. 2 and Eq. 3, the shape of function
Mn

w is an isosceles trapezoid centered inn, for eachw, that
degenerates into a triangle when2w = L + 1.

We can verify that in this ideal case, given the model and
Eq. 4, both the up and down slopes last formin (2w, L + 1)
frames, and that the plateau of absolute maximum is
|2w − (L + 1)| long. It’s also straightforward to verify that:

Mn
w < M, if 2w < L + 1

Mn
w = M, if 2w ≥ L + 1

(5)

where M = maxw,n Mn
w (see Fig. 1). We define

ψn
w,L (i, b) the generic trapezoidal function, centered inn,

whose value isMn
w at the center (the absolute height of

the minor base) andb is the value outside the trapezoid.



The function is plotted in Fig. 2. We defineψn
w,L (i) =

ψn
w,L (i, 0), the function which corresponds to the ideal

transition case.
In the real case, camera and objects motion, color and

luminance variation and so on cause the featureF to be
non constant on the shot, thus making Eq. 2 and Eq. 3 not
satisfied. The consequence is that the shapes of both the
slopes and the plateau are usually disturbed.

2.2 Two-Step Algorithm

Due to lack of ideality in most of the shot transitions,
instead of relying only on correlation between data and
the idealψn

w,L (i) function, we employ an algorithm con-
structed of two steps: the first one searches for the tran-
sition center positionn, assuming a fixed frame step2w,
and the second searches for the transition lengthL, by try-
ing different values ofw, but keeping the transition center
fixed. While in the ideal case even the first step would be
sufficient, in real cases an error in locating the center posi-
tion would also lead to a wrong estimate of the length. For
this reason a second step is introduced to provide a differ-
ent view of the function behavior, a possible confirmation
on the first step outcome and a new estimate for the window
size. Iteratively repeating the two steps allows progressively
decreasing the error. In this section we explain in details
our transition detection algorithm. We perform the follow-
ing analysis on overlapped windows of 30 frames, distant
15 frames each other, since we suppose that transitions are
much shorter and farther than that.

2.2.1 First step

In the first step the values ofMn
w are calculated using the

frame-stepw, which is found in the previous iteration of
the algorithm, or it’s arbitrary chosen for the first itera-
tion. The best trapezoidψn

w,L (i) is searched by moving
the center n, and trying different values for L, but keeping
w fixed. The trapezoid extends overδ = min (2w, L + 1)+
|w − (L + 1) /2| frames on the left and on the right of the
center frame. For each couple ofn and L the following
matching measure is computed:

Λn
w,L =

n+δ∑
i=n−δ

min
(
M i

w, ψn
w,L (i)

)−
n+δ∑

i=n−δ

∣∣M i
w − ψn

w,L (i)
∣∣

(6)

The value ofn is searched within the 30 frames window,
and alsoL must be selected such thatn + δ andn− δ don’t
exceed the window.

In Eq. 6, two components are evident: the first one is
needed to maximize the area under the trapezoid, while the

Figure 3: Example of realMn
w values and the best trapezoid

fitted.

Figure 4: Values of the distance metricMn
w, with respect

to differentw values. This corresponds to the transition of
Fig. 1.

second component describes the similarity of our linear hy-
pothesis with the data. It is very important to include both
components, since we expect the distance measure to give a
trapezoidal shape (the second term in Eq. 6), but we also re-
quest itsstrength, i.e. the amount of difference between the
first and the second scene, to be significant. The first term in
Eq. 6 in fact describes how much the value ofMn

w surpasses
the ideal trapezoid. After finding the trapezoid which max-
imizesΛn

w,L, we considern = arg max
n

Λn
w,L the candidate

transition center. In Fig. 3 we show an example of trapezoid
fitting with real data.

2.2.2 Second Step

Thanks to the definition ofMn
w as a distance function cen-

tered inn, as in Eq. 4, increasing the frame-stepw makes
the value ofMn

w to grow up to an absolute maximum when
w = (L + 1)/2 and then to be stable. It is easy to demon-
strate that, in the ideal case, this growth is linear. Thus the
growing function can be plotted as shown in Fig. 4, with a
linear slope followed by a horizontal line, when the value
of Mn

w is stable. The second step of the algorithm uses



this propriety to give an estimate of the transition length,
by finding the smallest w which maximizesMn

w. To provide
a technique able to deal with noise, the tilt change of the
chart is searched by minimizing the function:

Zn
w =

w∑

i=0

∣∣∣∣Mn
i −

Mn
w

w
i

∣∣∣∣ +
W∑

i=w+1

∣∣Mn
i −Mn

w

∣∣ (7)

whereW is the maximum size that a transition can assume.
Thew value that minimizesZn

w becomes our current frame
step for the next iteration of the algorithm.

In simple cases the algorithm progressively narrows the
trapezoid minor base leading to the expected triangular
shape. Convergence is not guaranteed in non ideal condi-
tions, and, for this reason, we add a convergence constraint:
at each iteration the minor base ofψn

w,L (i) is forced to be-
come smaller. In Fig. 5 theMn

w values are shown for 4
successive iterations of the algorithm in a real gradual tran-
sition case. At each iteration, we achieve a more precise es-
timate of the transition center and length, and thus a shape
more similar to a triangle.

2.2.3 Decision Space

Given the transition lengthL = 2w − 1 and its centern, as
detected by the algorithm, the functionψn

w,L (i) becomes
triangular shaped. We must now verify the significance of
the transition and how much the real data fit to the linear
transition model. We introduce the following measure:

Peakn
w = Mn

w −min
(
Mn−2w

w ,Mn+2w
w

)
. (8)

The Peak value measures the height of the center value
with respect to the lower of the two values ofM in cor-
respondence to the extremes of the triangle, and provides
information on the transition significance. In fact, while in
the modelMn±2w

w = 0, in real cases this is not true, be-
cause of object and camera motion that causes the feature
F to be not constant before and after the transition. To cope
with this we have to get rid of the hypothesis of having an
isosceles triangle and define the fitting error measure as:

errn
w = 1

4w

2w∑
i=1

∣∣Mn−i
w − ψn

w,L(n− i, Mn−2w
w )

∣∣

+
∣∣Mn+i

w − ψn
w,L(n + i,Mn+2w

w )
∣∣

(9)

The error sum is divided by the triangle’s base4w to
obtain a measure which is independent from the transition
length. A minimum threshold on the Peak value,TP and a
maximum threshold on error,TE , are employed to discrim-
inate real shot changes from false ones. The final decision
space is then based on two parameters only which are the
same for cuts and transitions.

2.3 Conclusions

We presented an algorithm for shot detection able to detect
both abrupt cuts and gradual transitions in sport videos. Ex-
perimental results and comparisons show that our algorithm
performs better than other techniques at the state of the art,
and that it requires only two parameters, thus making the
learning process easy.

3 Low-Level Feature Extraction

The low level features are the global motion models: (1)
pan/track: horizontal motion of the camera; (2) tilt/boom:
vertical motion of the camera; (3) zoom: camera focal
length change. In this task we have employed the anal-
ysis of the transformations between images, including the
homography and the fundamental matrix. Instead of classi-
fying the pan and track as a single feature, we separate their
detections based on different methods. Pan and tilt motions
are caused by camera 3D rotation, while track and boom are
caused by 3D camera translation. Image motions caused by
3D camera rotations can be formulated by the homography
transformation, which is insufficient to model the motion
that are caused by 3D translation, when depth information
exists. Therefore, we detect the pan, tilt and zoom using the
homography analysis, and detect the track and boom based
on the fundamental matrix analysis. Finally, the results of
the pan and the track detections are merged to produce the
results of feature 1, and the results of the tilt and the boom
detections are merged for the results of feature 2. In the pro-
posed method, we used the SIFT operators [5] as the sparse
optical flow to estimate the frame transformations.

3.1 Geometric Analysis of Camera Motions

In this section, we model the camera motion between two
image frames by the following motion parameters (see Fig.
5): (1) pan angleAx (left or right): rotation angle around the
Y-axis, (2)tilt angleAy (up or down): rotation angle around
the X-axis, (3) zoom factors, the ratio of the camera fo-
cal lengths between two image frames, and (4) translation
vectorv = (vx, vy, 1)T . The first two cases can be con-
sidered as “pure” rotations when there is no change in the
camera’s intrinsic parameters. The last case deals with a
pure translation without any rotation or any change of the
intrinsic parameters. Horizontal to/from camera movement
is called “tracking” and is usually executed with a movable
“dolly”. Vertical translation movements are called “boom-
ing” or “craning” and are accomplished with a “crane” or
“jib”.

Before the analysis of different camera motion, we first
introduce the pin-hole camera model that models a real
world camera. Then, for each different camera motion, we
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Figure 5: The extrinsic parameters of a pin-hole camera rep-
resent the rigid body transformation between the world co-
ordinate system (centered atO) and the camera coordinate
system (centered atC). The intrinsic parameters, e.g. the
focal lengthf , stand for the camera internal geometry.

give geometric explanation of their properties and present
the method to compute the motion parameters, e.g., the ro-
tation angles and the zoom factors.

3.2 Pin-hole Camera Model

A pin-hole camera (see Fig. 5), based on the principle of
collinearity, projects a region ofR3 lying in front of the
camera into a region of the image planeR2. As is well
known, a 3D pointU = [X Y Z 1]T and its corresponding
2D projectionu = [u v 1]T in the image plane are related
via a3× 4 projection matrixP as,

u ∼ PU = K[R | v]U, K =




f γ u0

0 λf v0

0 0 1


 , (10)

where∼ indicates equality up to a multiplication by a
non-zero scale factor,R is the 3 × 3 orthonormal rota-
tion matrix , v = −RC is the translation vector, where
C = [Cx Cy Cz]T represents the coordinates of the cam-
era center in the world coordinate system, andK is a non-
singular3 × 3 upper triangular matrix known as the cam-
era calibration matrix, which has five parameters: the focal
lengthf , the aspect ratioλ, the skew factorγ accounting
for non rectangular pixels, and the principal point(u0, v0).
The principal point is the intersection between the optical
axis and the image plane. The intrinsic parameters inK de-
fine the internal imaging geometry of the camera, while the
extrinsic parameters (R andv) relate the world coordinate
system (centered atO) with the camera coordinate system
(centered atC).

3.3 Pure Rotation - Pan / Tilt

Algebraically, if u andu′ are the 2D projections of a 3D
scene pointP before and after the pure rotation. For sim-
plicity purpose, the world coordinate system is chosen to

Image 1 Image 2

Figure 6: Two images from a pan sequences. The red points
represent the correspondences in the images. The rotation axis of
this sequence is[0.0007, 1.0000, 0.0000], and the magnitude of
the rotation angle is16.75◦.

coincide with the camera’s, so that the camera projection
matrixP = K[I | 0], and,

u = K[I | 0]U,

u′ = K[R | 0]U = KRK−1K[I | 0]U = KRK−1u,(11)

so thatu′ = Hu with H = KRK−1. This 2D homog-
raphyH is a conjugate rotation that has the same eigen-
values (up to scales) as the rotation matrixR, namely
{µ, µeiθ, µe−iθ}, whereµ is an unknown scale factor (if
H is scaled such thatdet(H) = 1, thenµ = 1).

Consequently, the eigenvector ofH corresponding to the
real eigenvalue is the vanishing point of the rotation axis,
the location of which can be used as the criteria to decide
the camera rotation. Ideally, panning motion has the ro-
tation axis exactly parallel to the imagey-axis, and with
noise present in the real data, the rotation axis should be
almost parallel to the imagey-axis, and the axis vanishing
point should be located virtually at infinity in they direc-
tion. Similarly, when the camera is tilting, the axis van-
ishing point should be located virtually at infinity in thex
direction. Therefore, the angle of rotation between views
can be computed directly from the phase of the complex
eigenvalues ofH.

For example, between images shown in Fig.6, there is
a pure horizontal rotation (pan) of the camera. The corre-
sponding points are automatically found by the SIFT oper-
ator [5]. Based on the correspondences, the computed ho-
mographyH is,

H =




1.1938 0.0108 −235.7323
0.0289 1.1420 −8.3286
0.0005 0.0000 1.0000


 .

From H, the angle of the horizontal rotation is esti-
mated as16.75◦, and the rotation axis vanishing point as
[0.0007, 1.0000, 0.0000], i.e., it is they-axis. Therefore, we
classify this shot as a panning shot based on the analysis we
have made above.



Image 1 Image 2

Figure 7:Two images from a zooming sequences. The red points
represent the correspondences in the images. The scaling factor
λ ≈ 1.55, and the principle point is[177.9, 116.0], which is very
close to the image center (image size is[360]× [240]).

3.4 Zooming

In the case of zooming, the motion between images can be
approximated as a simple magnification, where we assume
the zooming perturbs neither the principal point nor the ef-
fective camera center. Algebraically, ifu andu′ are the
images of a pointU before and after zooming, respectively,
then,

u = K[I | 0]U,

u′ = K′[I | 0]U = K′K−1K[I | 0]U = K′K−1u,(12)

so thatu′ = Hu with H = K′K−1. If only the focal
lengths differ betweenK′ andK, then it is straight-forward
to show that,

K′K−1 =
(

λI (1− λ)u0

0T 1

)
, (13)

whereu0 is the inhomogeneous principal point, andλ =
f ′/f is the magnitude/scaling factor. Therefore, the special
form of H can be used as the criteria to decide the zooming
motions. In particular, the lower triangular elements ofH
are all zeros (or close to zeros), and the first two diagonal
elements are equal. For the example shown in Fig.7, the
estimated homographyH is,

H =




1.5632 0.0036 −98.3642
0.0208 1.5426 −64.1500
0.0002 0.0001 1.0000


 .

In other words, the zoom factor is∼ 1.55, and the prin-
cipal point locates at[177.9, 166.0], which is very close to
the center of the image, whose dimension is[360]× [240].

3.5 Pure Translation - Track / Boom

In the situation where the motion of the camera is a pure
translation, e.g. side-way tracking, without any rotation or
change of the camera’s intrinsic parameters, points inR3

move on the straight lines parallel top0, and the projected

(a) (b)

Figure 8: A pair of frames from a horizontal translation
shot, (tracking right). The epipole (direction of the trans-
lation) locates at[0.9742, − 0.2258, − 0.0012].

intersection of these parallel lines is the vanishing pointp
in the direction ofp0. It is evident thatp is the epipole for
both views, and the imaged parallel lines are the epipolar
lines.

In the pure translation case, one can assume that the two
cameras areP = K[I | 0] andP′ = K[I | p0]. Therefore,

F = [e′]×P′P+ = [e′]×, (14)

whereP+ is the pseudo-inverse ofP, i.e. PP+ = I.
For example, between the images shown in of Fig.8 (a)

and (b), there is a pure translation (track or boom) of the
camera. The computed fundamental matrixF is,

F =




0.0000 0.0012 −0.2258
−0.0012 0.0000 −0.9742
0.2258 0.9742 0.0000


 . (15)

That is, the epipole locates at (0.9742, -0.2258, -0.0012),
and thus the shot is classified as having a track motion (hor-
izontal translation).

3.6 Results and Discussion

In the submission, we combined the results of pan and track
as the results for feature 1 (pan/track) and combined the re-
sults of tilt and boom as the results for feature 2 (tilt/boom).
In the news programs, many times the videos are noisy, and
even it is difficult for human eyes to differentiate the mo-
tions. There is an issue that how strong the feature occurs
in a particular shot. Thus, we have submitted four runs with
different ranking methods. These ranking methods consider
different combinations of three factors,

1. Global Displacement: This refers to the global motion
of the entire shot. For instance, in pan/track motion,
this represents the absolute displacement of the frames
along the major moving direction.

2. Continuity: This refers to the smoothness of the mo-
tion. The purpose of this factor is to test if a given shot



is a true motion shot or is a shot with camera shaking
motion.

3. Period of Motion: This refers to the temporal length of
the motion. Longer periods indicate stronger motion.

Based on the results of the training dataset, we have se-
lected the thresholds for the testing submission. The evalu-
ation results showed that the proposed system has very high
precision, but low recall. One reason for this is that we have
set a fixed threshold and only returned the shots with high
confidence. We have loosen the selection criteria and recall
has increased with little sacrifice in precision.

4 High-Level Feature Extraction

The task of high level feature extraction has been imple-
mented using three approaches. First method was based
on global features that were subdivided into fixed sized
patches. This technique was useful for detecting features
that occupy most of the image and had a lot of in-class vari-
ation, such as mountain, building, waterscape, and sports.
Second approach was based on local features of image seg-
ments. This technique was useful for detecting features that
had a certain structure but still had in-class variation, such
as explosion/fire, map, US flag and car. Third approach
used feature points and patch appearance similarity. This
method was useful for the features that have a consistent
appearance signature and with small in-class variation, such
as US flag. Using these methods, results were submitted for
all features except people walking/running.

4.1 Fixed Sized Region-based Method

This technique detects high level features based on image
features obtained from fixed sized image regions. It exploits
consistent appearance of similar patches in a specific part of
the image. For example, sky usually appears in top part of
the image. The features detected using this method were ex-
plosion/fire, map, US flag, building, waterscape, mountain,
prisoner, sports and car. These features were detected using
Support Vector Machines applied on the low level wavelet
feature vectors.

Wavelet features were extracted using the gradient infor-
mation of each key frame in the given shot. Moreover, these
features were estimated on the entire frame. The wavelet
feature vector was composed of four blocks. These blocks
were obtained by applying high and low pass wavelet filters
in the horizontal and vertical directions. The first block was
obtained by applying a low pass filter in the horizontal di-
rection followed by a low pass filter in the vertical direction.
The second block was estimated by applying a low pass fil-
ter in the horizontal direction followed by a high pass filter

(a)

(b)

Figure 9: Wavelet feature estimation of images. (a) Mountain
image. (b) Wavelet feature vector.

in the vertical direction. The third block was derived by
applying a high pass filter in the horizontal direction fol-
lowed by a low pass filter in the vertical direction. And, the
fourth block was calculated by applying a high pass filter in
the horizontal direction followed by a high pass filter in the
vertical direction. An example of the input image and its
wavelet feature vector are given in Figure 9.

We used the labelled images for training and classified
the unlabelled images (testing images) using this method.
The wavelet feature vectors were calculated for all the train-
ing and testing images. The Support Vector Machine was
trained using these estimated wavelet feature vectors. The
SVM automatically selects a subset of positive and nega-
tive examples (obtained from the labelled data) and these
subsets form the support vectors. During testing, the SVM
classifies an unknown image as a positive or negative using
these support vectors. Each unknown image was given a
score by the SVM. This score depended upon how corre-
lated each wavelet feature vector (of the unknown image)
was to the positive or negative support vectors. More posi-
tive score of the feature vector (of the unknown image) re-
sulted in a higher ranking.

Furthermore, each feature vector was divided into equal
sized regions and their support vectors were calculated us-
ing the above mentioned method. The final classification
was achieved by the voting of the support vectors of each
region. Different voting thresholds were set for the differ-



ent runs. Higher threshold resulted in higher precision and
lower recall values. This technique used the spatial con-
straint of the local features for high level feature detection
but it had certain limitations. These included mis-detection
due to the change in camera orientation and zoom, partial
occlusion of features, etc. Following technique was em-
ployed to overcome these problems.

4.2 Variable Sized Region-based Method

This technique utilized segmentation of image into regions,
and used local features belonging to meaningful image seg-
ments for high level feature extraction. The segments could
have arbitrary appearance, size and shape but they had a
fixed sized feature vector. The relevant segments, belong-
ing to the high-level feature, were recurring and displayed
structure. And the irrelevant segments did not have a sig-
nificant pattern. Thus, using this technique we were able to
capture the structure of the recurring segments and distin-
guish it from the irrelevant segments.

There were five major steps involved in this method for
the high level feature detection. First, for a particular high
level feature the key frames of development data were seg-
mented using Meanshift image segmentation [2], as shown
in Figure 10. The key frame labels were propagated to
each image segment. Second, local features corresponding
to each image segment were computed. This formed a fif-
teen dimensional feature vector (for each region) compris-
ing of color mean, color variance, region area, and normal-
ized histogram of gradient directions. These features cap-
tured color and texture of the region. Each key frame now
had several segments with one feature vector correspond-
ing to each one of them. Third, using Principal Component
Analysis (PCA) we determine the principal components of
the feature space. The feature points corresponding to the
training data were projected into the transformed feature
space using the principal components. Fourth, a Support
Vector Machine (SVM) was trained on the transformed fea-
ture points. A two class SVM, running radial basis function
as the kernel was used. Finally, for testing a key frame, first
two steps were performed to compute local feature vectors.
SVM classified each feature vector in the test image with
a confidence value. The decision for individual segments
was merged using weighted mean of the confidence of each
segment.

The effectiveness of this technique was dependent on
the quality of image segmentation. Over-segmentation (too
many segments) was preferred over under-segmentation
(very few segments) as two different regions with very sim-
ilar features should have very close feature points. On the
other hand under-segmentation might fuse two actually dif-
ferent regions together into one segment with a common
feature vector. This problem had been observed in some
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Figure 10: Meanshift segmentation of images. (a) Map image.
(b) Meanshift segmented image.

tests and might have a bad influence on the results.
A text analysis algorithm was also used to complement

the image based technique. This algorithm built a keyword
histogram using the ASR available for the positive shots in
development dataset. This module improved the rank of
the most relevant shots by measuring the similarity with the
keyword histogram.

4.3 Feature Points and Patch Similarity
Method

So far we had used image features in fixed or variable sized
image regions, but for some features it was important to em-
ploy a technique that use direct appearance matching such
as template matching. US Flag was an example of such a
feature.

This method utilized feature points in key frames and
used appearance similarity of image patches around these
points. Using the development data, positive examples pro-
duce clusters of image patches based on appearance simi-
larity. This data was used to build appearance model of the
feature. For each test image, feature points were used to re-
trieve local image patches, which were then matched to the
feature model. The decision was taken based on degree of
similarity with the model.

This technique had given better results only in case of
features with well-formed structure such as the US Flag.
The rest of the features had diverse appearance; hence can
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Figure 11: Evaluation analysis for the high-level feature detec-
tion. (a) Explosion/Fire (b) Map (c) US flag

not be detected by using patch similarity.

4.4 Results and Discussion

Using these methods, results were submitted for all fea-
tures except people walking/running. The performance of
the variable sized image segment based approach was bet-
ter than that of the fixed sized image region based approach.
Image segmentation gave regions that were more meaning-
ful and was more robust to the changes in camera orien-
tation, zoom, object position etc. Text analysis algorithm
also improved the results, mostly in case of features like
maps, where the common keywords in weather news and
geographical information made it distinct. This was evident
from the results in run1 and run2. Former was with the text
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Figure 12: Evaluation analysis for the high-level feature detec-
tion. (a) Building (b) Waterscape (c) Mountain

analysis and latter was without it. ‘Total shots with feature
returned’ is the same (557 shots) in both cases but ‘Average
Precision’ improves from 0.1648 to 0.1855.

The text analysis algorithm did not significantly improve
results in case of other features. This is because the al-
gorithm relied on the fact that the keywords of the correct
shots would be common for in-class shots and significantly
different for out-of-class shots. This was not the case for
any feature except maps. We understand that because of
the diversity in the appearance of the high-level features,
the appearance based algorithm can only detect them up to
a certain extent. To further improve the results we need to
employ more sophisticated text processing algorithms in ad-
dition to better appearance based detection methods. Evalu-



Figure 14:The overview of the PEGASUS search system.

ation analysis for the explosion/fire, map, US flag, building,
waterscape, mountain, prisoner, sports and car feature de-
tection for the best run are given in Figures 11, 12 and 13
respectively.

5 Topic Search

This year, it is the first time for UCF Computer Vision Team
to participate in the topic search task. We have established
the PEGASUS system, a web-based interactive search en-
gine with the graphical user interface. The proposed sys-
tem has four searching mechanisms: (1) searching by the
automatic speech recognition (ASR) transcript, (2) search-
ing by the optical character recognition (OCR) output, (3)
searching by matching the global color statistics of the key-
frames, and (4) searching by considering K-nearest neigh-
bors. There are several features of the PEGASUS system:
(a) ability to combine any number of the four searching
mechanisms; (b) ability to evaluate the logical expressions
of the search queries. (c) ability to perform the relevance
feedback iterations. Figure 14 shows the overview of the
PEGASUS searching system.

5.1 Indexing

The system contains two parts, indexing and retrieval.
There are four components, based on which the indices
were created: ASR, OCR, global histogram and high-level

features. Since both the ASR and OCR information are in
the text form, we generated separate indices for them using
the Lucene full-text index in the Tomcat server.

We have computed the RGB global histograms of the
key-frames provided in the ground truth data. The index-
ing system for the histograms is implemented in the linked-
list form. A key-frame is accompanied with a ranked-list
of its similar shots. The similarity measure is computed
based on the color histogram intersection, and only those
whose similarity is above certain threshold are included in
the linked-list. We also tried to index the video shots based
on the donated high-level semantic features. One problem
with this approach discovered in the experiment is that, the
ten donated features are either very general or very specific.
Therefore, they do not provide much distinctions between
the video shots. All three index systems on ASR, OCR and
global histograms are constructed individually.

5.2 Retrieval

In the retrieval phase, we have implemented a logical ex-
pression parser, which is able to read in the query in up to
two levels of logics, including AND, OR and NOT. One
example of such query could be ”(bill AND Clinton) OR
(president) - bush”. This query refers that the user wants to
find out the shots which contain the phrases ”bill Clinton”
or ”president”, but not the ones with the word of ”bush”.

The query is submitted to the search system, and the first
round of the returned are computed using the ASR indexing
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Figure 13: Evaluation analysis for the high-level feature detec-
tion. (a) Prisoner (b) Sports (c) Car

database. A set of relevant shots are returned in a ranked
list, which is based on the TF-IDF measure between the
query and the shot’s words. Since neighboring shots of-
ten present similar or even the same semantic content, the
neighbors of each of the returned relevant shots are also re-
turned for the further refinement. Each shot in the panel is
shown by its first key-frame, and it is accompanied with a
check-box, which allows user to use this shot for the next
round of search or not.

The selected shots in the previous rounds are used for re-
fining the search query. For each of the models, ASR, OCR
and global histograms, new query is generated. First, let us
consider the ASR case. Based on the selected shots, a word-
histogram is generated as obtaining the words with the high-

Figure 15: The refined searching results using the global color
histograms of the video key-frames.

est frequencies. Based on the generated word-histogram,
user is able to formulate a better query to express the need.
For instance, based on our observation, for topic “tennis
player on court”, user could search by “tennis”. A series
of the positive shots are selected from the first round of re-
turns. Based on these shots, a word-histogram is generated,
in which words “cup” and “tournament” are with the highest
frequencies. Therefore, user can refine the query to be “cup
OR tournament OR tennis”, which provides better search
results. Due to the nature of the OCR information, a similar
task is performed for the refinement as for the ASR infor-
mation. For the use of the global histograms of the video
key-frames, we have utilized the linked-list built in the in-
dexing phase. For each of the selected shots, its linked-list
are returned in the next round. An example is shown in Fig-
ure 15, where the left column shows the selected positive
shots of President Bush, and they are followed, in each row,
by their similar shots.

5.3 Evaluation Results

The UCF Computer Vision Team has submitted two runs for
the interactive search. Run “VISION1” is purely based on
the ASR information, while the second run “VISION2” in-
volves the interactive search using ASR, OCR and global
color histograms. In each run, the K-nearest neighbor
method is used in the relevant feedback process. As ex-
pected, the run using all the information performs better
than the one using only the ASR transcript. The average
precision plots of both runs are shown in Figure 16. We
have achieved the median performance among all the sub-
mitted runs.
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