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Abstract text for fusion across features at the kernel level for rare
concepts in 39 LSCOM:-lite set. Fusion over such differ-
In this paper, we describe the IBM Research system &t views, models and methods resulted in 22 % average
indexing, analysis, and retrieval of video as applied to theprovement over visual baseline.
TREC-2006 video retrieval benchmark. This year, focuswe developed a fully automatic retrieval systems for
of the system improvement was on ensemble learning gpglech, visual and semantic modality, and produced the
fusion for both high-level feature detection task and tl’ﬂ@p runs among automatic type A search systems. We
search task. used a new text search engine for our speech-based re-
Keywords — Multimedia indexing, content-based réreval system and explored multiple automatic query re-
trieval, MPEG-7, LSCOM-lite, Support Vector Machinesinement methods for it. For our visual and semantic re-
Model vectors, Model-based reranking. trieval systems, we applied a light weight learning ap-
proach. This year, our main focus was on the multi-
) modal fusion component of the system for combining our
1 Introduction speech, visual, model-based and semantic runs. We have
explored query-dependent search fusion among the text,
We participated in the TREC Video Retrieval Track anghodel, and visual retrieval scores. Our two query-class-
Submitted resu|tS fOI‘ the High'level Feature Detectioaependent fusion approaches resu|ted in top two perfor-
Search tasks, and Rushes experimental task. In this pamce runs with 0.0855 and 0.086708 MAP respectively.
per, will describe the IBM Research system and exa@uery dependant fusion gain was around 13% compared
ine the approaches and results for the all three tasks. T@§imp|e query-independent non-weighted fusion method
video content is analyzed in an off-line process that ifnn. Overall, our improved speech, semantic and visual
VOIVeS audiO'ViSUaI feature extraction, Clustering, Statisgpproaches and query dependant fusion approaches were
cal modeling and concept detection, as well as speechijik key performance contributors for our system.
dexing. The basic unit of indexing and retrieval is a video oy the rushes task, we have improved our existing

shot. _ _ search system and extended the list of functionalities
Our high-level feature detection system benefited fro easily browse through data collection using different

multiple learning approaches and learned fusion. Thisygalities: metadata, visual, concept, and tags.
year we used consider different random partitions of train-

ing and internal validation sets to build several SVM mod-
els for all concepts over all features. We also considergd
multiple views of the ground truth itself where more than
one annotator input exists for the development corpus. .
Multi-kernel linear machines provided an interesting c0|2-'1 Visual Features

Video Descriptors

“|BM T. J. Watson Research Center, Hawthorne, NY, USA The system extracts eight different visual descriptors at
TDept. of Computer Science, Columbia University various granularities for each representative keyframe of
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modality vs. another may change from one concept/topi Concept Scores o Semantic Space
to the next, the relative performance of the specific fea i L SCOMite:

tures within a given feature modality (e.g., color his- | s Sky
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all concepts/topics, and can therefore be optimized glok *Road o
ally for all concepts and topics. ﬁ *Maps Kiilans .

Last year, we performed extensive experiments usin
the TRECVID 2005 development set to select the best fegg re 1. Semantic feature extraction from LSCOM-lite
ture type and granularity for color and texture modalitigs, el classification scores
for concept detection and search tasks, respectively. The
following descriptors had the consistent top performan

Hheously optimize utility, to facilitate end-user access
for both search and concept modeling experiments: y op Y, '

cover a large semantic space, make automated extraction
e Color Correlogram (CC)—global color and structeasible, and increase observability in diverse broadcast

ture represented as a 166-dimensional single-bandé¥'s video data sets[NSD6]. LSCOM-lite is a subset

auto-correlogram in HSV space using 8 radii deptﬁ’fﬁ_ 39 concepts from the full LSCOM taxonomy.and was
[HKM *99]. jointly annotated by the TRECVID community in 2005,

see Figure 1. The semantic-based retrieval approach pre-
e Color Moments (CMG)—localized color extractedented in this work relies on a previously modeled high-
from a 5x5 grid and represented by the first 3 mgevel descriptor space, which for the purposes of Hig level
ments for each grid region in Lab color space asféature detection task consists of the 39 LSCOM-lite con-
normalized 225-dimensional vector. cepts. We apply concept detection to the query examples
ind generate model vector features consisting of the con-
Hj_ences of detection for each of the concept models in

: r lexicon (e.g., a 39-dimensional feature vector based
tropy, energy, contrast, and homogeneity extractéd N .
from the image gray-scale co-occurrence matrix %p the LSC'OM—Iilte lexicon) [NNSO04]. These features are
24 orientations. then used just like any other content-based features and

retrieval is performed by the same light-weight learning
e Wavelet Texture Grid (WTG)—localized texture exmethods used for visual retrieval. We use the tSes
tracted from a 3x3 grid and represented by the nanantic spacéo denote a vector space comprised of model
malized 108-dimensional vector of the normalizestores as a feature descriptor space for search, and the
variances in 12 Haar wavelet sub-bands for each gte&dtm semantic-based approadh used to denote search
region. methods in semantic spaces.

e Co-occurrence Texture (CT)—global texture repr
sented as a normalized 96-dimensional vector of

Although, the described visual descriptors are very
similar to the MPEG-7 visual descriptors [MSS02], the2.3 Motion Features
differ in a sense that they have been primarily optimized
for retrieval and concept modeling purposes, with mudMe introduce a novel low-level visual feature that sum-
less consideration given to compactness or computatioff@fizes motion in a shot. This feature leverages motion
efficiency. We use the ternisual-based approacto de- Vvectors from MPEG-encoded video, and aggregates local

note search methods in low-level visual descriptor spadgotion vectors over time in a matrix, which we refer to as
a motion image. The resulting motion image is represen-

tative of the overall motion in a video shot, having com-
pressed the temporal dimension while preserving spatial
The Large-Scale Concept Ontology for Multimediardering.

(LSCOM) is a first of its kind effort, designed to simul- Motion vectors are present for all macroblocks in P and

2.2 Semantic Feature



B frames of MPEG video. For I-frames, which start 3 ~High-level Feature Detection
GOP sequence of P and B frames, motion vectors have
zero-magnitude. We generate a new image for each sgot Support Vector Machine Ensembles for
with dimensions equal to the matrix of macroblocks. For Improving Performance
TREC news videos, motion images are dimensioned 20
columns by 13 rows. We preserve the spatial location pigure 2(a) illustrates the IBM high level feature detection
macroblock motion vectors by placing the vector’s origigystem. Our basic principle for modeling semantic con-
in the corresponding position in the motion image. Wsepts or high-level features based on low-level media fea-
scale each vector by some constant factor F, which repres has consistently been to apply a learning algorithm
resents the predicted future direction of that vector overthe low-level features [NNT05, NSS04, NBS2]. Our
F-many frames. The scaled vector is added to the mow-level visual features are described in Section 2. The
tion image, which aggregates all such vectors for the afriterion has always been to leverage generic learning al-
tire shot. The resulting two-dimensional motion image gorithms for all concepts rather than focus on an overly
cropped, linearized, and normalized, and used as a featiprecific and narrow approach that can only work for a
vector. In the case of TREC videos, this vector contaigigle concept. In our view generic learning provides the
260 features, corresponding to a scanline-version of iely scalable solution for learning the large scale seman-
motion image. tics needed for efficient and rich semantic search and in-
dexing.

2.4 Text Features

3.1.1 Data Partitioning
We extracted several text features for each shot based on

the speech transcript corresponding to the shot after ¥¥e partitioned the development data set provided by
pansion of the shot boundaries to include up to 5 iImmRIST into the following 3 internal partitions for facili-
diate neighbors on either side without crossing full videating hierarchical processing experiments and selection
clip boundaries. This shot expansion results in overlapy randomly assigning videos from the development set
ping speech segments and attempts to compensatetdagach partition. The table 1 below gives the number of
speech and visual mis-alignment. The resulting shot d&@yframes in each partition for models in 2005 and 2006.
uments were then processed for stop-word removal and used different partitioning for TRECVID 2005 and
Porter stemming, and for each term, the following telfRECVID 2006 training, and we leveraged both to build

features were computed: final models in 2006.
1. Term Frequency (TF) in given shot document Models (year) | Training | Validation | Fusion
2005 41K 7K 7K
2. Inverse Document Frequency (IDF) across all shot 2006 45798 | 10865 | 5238
documents Table 1. Data partitioning of the development set used
to build TRECIVD 2005 and TRECVID 2006 models.
3. TFxIDF TREVCVID 2005 partition has a selection set 7K for fu-

sion optimization.
4. Binary term flag, O or 1, indicating presence or ab-

sence of given term in given shot document Figure 2(b) illustrates the modeling and optimization
approach. This year we tried to go two steps further. One

Each shot was then represented in a sparse vector formass to also consider different random partitions of train-
where thei*” dimension reflected one of the above med#ng and internal validation sets to build several additional
sures for thei” term in the speech vocabulary. Thesmodels for all concepts over all features. These models
features were used for SVM-based modeling in the Higihen get combined using naive fusion strategies during
level feature detection task. detection and fusion. In addition to considering various
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Figure 2: The IBM 2006 TRECVID High-level Feature Detection System (a) overview, and (b) modeler component
for annotation and model building. Model building component handles data partitioning, parameter optimization, and
cross validation with multiple optimality criteria.

views of the development data set through multiple par8.2 Multiple Kernel Learning
tions and models derived from those, is to take multiple
views of the ground truth itself where more than one an- ,
notator input exists for the development corpus. This sec- _ N DN
ond additional dimension leads to further model building + 1
based on various automatic interpretations of the ground . H
truth. The various interpretations are derived by auto- * .° i
matically fusing the multiple annotations for the devel- @ ®) B )

opment corpus wherever they exist using fusion operators

such as max, min, average, etc. The actual model buifdgure 3:Learning class discrimination with multiple kernels.
ing is performed using the IBM Marvel Modeler tool (a/ellow crosses x) denotes support vectors; red, green and blue
screenshot of its annotation interface can be seen in Fanotes different kernels an_d their weights. (a) L_inear classifier
ure 2(b)) which automates everything including the parfjl the feature space. (b) Asingle SVM, or averaging kerels. ()
tioning, and feature and parameter optimization under tﬁ\_léeragmg multiple SVMs. (d) Multiple Kernel Learning with
hood thus creating a simple interface for non-experts wﬁoared support vectors and learned kemel weights.

want to build good quality models based on several besﬁ

practises that we have developed over the past five ye g visual recognition applications we often have more
of the benchmark. than one type of cues from the data. They can come in

the form of different types of descriptors, such as color-

correlogram or semantic concepts, or in the form of differ-
Additional LSCOM models built for Type B System enttypes of feature design from common features, such as
Due to time limitations we were unable to build modthe choices for modeling time and computing similarity in
els for all the LSCOM concepts [NSD6] but we con- Sections 2 and prior work [EXCS06]. Two questions nat-
fined ourselves to a small set of models that we thoughally arise: (1) Can we collectively use these multiple
could be relevant to the 39 LSCOM-lite concepts beingies to make better prediction of the concept? (2) Can we
detected [OIKS]. The mapping and relevance weights sifmultaneously learn the importance of each of the input
the LSCOM concepts for the LSCOM:-lite concepts, wasies?
done manually, and included in our one Type B submis-We consider multiple cue fusion in the context of SVM-
sion. like kernel classifiers, i.e., linear fusion for learning a lin-



ear discriminant in a high-dimensional feature space @empared to the early and late-fusion schemes, the num-
shown in Fig. 3(a). Denote the pool of training shotser of parameters of MKL is close to those of the early
asv;, i = 1,.., the collection ofk different kernels as fusion, and the set of kernel weights naturally lends to in-
K,(-,-), j = 1,..k. There are several popular practiceerpretations of the result.

for this task [TLN"03]. Fig. 3(b) depicts “early-fusion”, It is shown [BLJ] that this problem can be formulated
i.e., concatenating input vectors or averaging the differéntits dual form as Problem (4), i.e., solving for optimal
kernel values to arrive at a single kerd€{v;, -), and then nonnegative linear coefficients; > 0 so that the trace

learn a single SVM for class separation. Denote the S@-Zle NjKj remains constant (chosen to be equal to
port vector weights as;, the decision function for a testd _ tr(z’;:l K;)) and so that the soft margin SVM is

exampled is then written as optimized with respect to this linear combination of the

. - N kernel matrices.
y= Z%‘K(Unv)- 1)

2
min T 6T 4)

Fig. 3(c), nick-named “late-fusion”, corresponds to learn- 2 %
ing £ SVMs independently and average the decision val-g_ t. ATDijDUA < tr(ij),y? j=1,...,k
ues, withe; ; the kernel-specific support vector weights, ‘ ‘ d

in this case the decision value is computed as in EquatWHereDy is the diagonal matrix with the labelson the
(). diagonal and” is the soft margin penalty parameter de-
termined with cross-validation. This problem can in turn
y= szz a Kj(#, ;). (2) be converted into a standard form of second-order-cone
i programming, and we obtain its solutions with the convex

These fusion schemes has two notable drawbacks: (1) ﬁgﬂ_ver Sedumi [Stug9].

ther take into account the relative importance among dif-
ferent kernels, (2) the “late fusion” requirésrounds of 3.3 Fusion Methods

training for different SVMs, leading not only to increased ) _ )
computational requirements in training time, but also'¥e applied ensemble fusion methods to combine all con-

larger trace of the model that increases the classificatffPt detection hypotheses generated by different model-
time and memory requirements. It is also possible to ledf¢ techniques or different features. In particular, we
another layer of SVM for kernel weights on the decisioperformed a grid search in the fusion parameter space
values from the individual SVMs, however this not onl§P Select optimal fusion configuration based on a held-
increases the computational complexity, but also need9t§ validation set performance. Fusion parameters in-
stratify the training data and is more prone to over-fittina!Ude a score normalization method and a score aggrega-
To complement the existing fusion schemes in thed@n method. Score normalization methods include range
two aspects, we explore the Multiple Kernel Leamiggormallzatmn, statistical normalization shifting the score

(MKL) decision function in the form of Equation (3) an istribution to zero mean and uni-variance, Gaussian nor-
Fig. 3(d) for multi-cue fusion in visual recognition i_e_malization, and rank normalization which discards the ab-

learning linear weightg,; among the kernelg = 1, .k solute scores and uses only the rank of each item in the

with shared support vector weights. result list. The fusion methods we considered include
' MIN, MAX, AVG, and weighted AVG fusion. As a spe-

A 0 K (&, 3) Ccial case of weighted averaging, we considered validity-

Y ZJ_:Z:W K (&, 2:) ) based weighting, where the weights are proportional to

the Average Precision performance of each concept de-
Proposed recently by Bach and Jordan [BLJ], this detéction hypothesis on a held-out validation set. We also
sion function can also be viewed as one SVM with suppa@xplored two main fusion variations depending on the or-
vector weightsy; over a "hyper-kemel_ yi; K;(-,v;). der in which we fused hypotheses.
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Figure 4: Retrieval performance of IBM high level feature runs in context of (a) all the Type A submissions using the
new mean inferred average precision measure (b) all the Type A submissions using the mean performance of precision
achieved at a depth of 100

Flat Fusion across Features and Approaches.The 2. SVM-2006: SVM Models build for TRECVID 2006
first approach was based on a single-level global fusion using IBM Marvel Modeler for all 39 concepts using
across all individual hypotheses, regardless of whether a new patrtitioning of the development corpus with
they came from different features or modeling techniques. varying interpretations of the groundtruth

We call thisflat fusion With this approach we performed

a full grid search in the fusion parameter space but dud- Text: Text retrieval for all 39 concepts

to the large number of hypotheses being fused, we ex-

plored only binary weights (presence or absence of eacfi: LSCOM: To enforce context selectively we built
additional concept models beyond the required 39

hypothesis) with the weighted average score aggregation - .
method. This has the effect of doing hypotheses selection USiNg LSCOM annotations. ~ These models were
used to leverage context for the following 4 con-

but only non-weighted fusion. i
cepts:Boat/Ship, Car, Government Leader and Wa-

terscape/Waterfront
Hierarchical Fusion across Approaches. The other

approach was based on hierarchical, two-level fusion5. MKM: Multi-kernel linear models for 4 concepts:
where all features were fused first for each modeling ap- Bus, Court, Natural Disasters and Snow
proach, followed by fusion across the independent model-
ing approaches. Thisierarchical fusionlimits the num- 6. IVP: Image Upsampling based SVM model for 1
ber of hypotheses being fused at the second level and sig- conceptAnimal
nificantly reduces the fusion parameter search space. We
were therfefore able to e>_<p|o_re more \_Neighted_ co_mbir?_-ﬂr Submitted Systems and Results
tions at this level by considering 10 uniformly distribute
weight values for each dimension. Based on all the experiments we submitted the following
To generate the runs, we performed detection over theuns:
concepts first using the following individual approaches If the mean inferred average precision is to be consid-
and then proceeded to fuse the resultant retrieval lists wilted as a measure of the overall performance of the sys-
described normalization and fusion techniques. tems submitted, it can be seen that most of the runs appear
to have similar performance except for the visual only
1. SVM-2005: SVM Models built during TRECVID baseline, see Figure 4. A selection strategy between the
2005 for all 39 concepts using the 2005 data partiisual versus text based retrieval based on performance on
tions and single interpretation of the ground truth the held out set improves performance over visual only



Run Priority| Typg Description MAP

VB 6 A Naiive fusion of SVM-2005 and SVM-2006 0.145

UB 4 A Best of Naiive Fusion of SVM-2005 and SVM-2006 or Text 0.156

MBW | 1 A Gaussian normalization and Weighted Fusion of SVM-2005, SVM-2006169
and Text

MBWN 5 A Sigmoid Normalization and Naiive Fusion of SVM-2005, SVM-2006.177
and Text

MRF | 2 A Weighted fusion of SVM-2005, SVM-2006,Text, MKM and IVP 0.176

MAAR| 3 B Weighted fusion of SVM-2005, SVM-2006,Text, MKM, IVP and0.17
LSCOM Context Models

Table 2: IBM TRECVID 2006 High level Feature Detection Task — Submitted Runs

detection by 7 %. Fusing across the two modalities uscluding the image upsampling prior to modeling also
ing our SVM-2005 and SVM-2006 visual models and tektelp improve performance for 1 conceptnimal The
baseline results in an improvement of 17 % with weightsulti-kernel linear machines which provide an interest-
derived from a held out set and gaussian normalizatioy context for fusion across features at the kernel level
prior to fusion. When a sigmoidal normalization schemimit the four concepts for which we used this idea were
is employed with naive fusion the performance over tht among the twenty concepts evaluated this year.
visual only baseline improves by 22 %. Note: It was no-

ticed based on internal experiments that the actual pre-

cision at 100 for each of the six IBM runs was doubld  Aytomatic Search

that of the number reported by NIST. This discrepancy is

assumed to be on account of the sampling that was P |BM team continued its focus on automatic search
formed prior to evaluation. for this year's TRECVID, submitting 5 automatic runs
Some concepts benefit significantly by the multi-modélype A). Two of our automatic runs outperformed all
fusion. For examplairplaneperformance jumps up fromother automatic and manual runs in Mean Average Pre-
a mere 3.6 % for the visual only baseline to 16.6 % f@ision scores. The overall architecture of our automatic
the multimodal fusion across visual svm results and tes@arch system was again a combination of speech-based
although the text alone is not any better than the visualrieval with automatic query refinement, visual retrieval
alone. This indicates reranking and improvement in preased on light-weight learning, and model-based retrieval
cision when the two modalities are fused. A further ingnd re-ranking using automatic concept detectors for
provement in performance also can be seen for some cite 39 LSCOM:-light concepts [OIKS] (see also system
cepts with context fusion. For exampéplaneimproves overview in Figure 5). Most processing was done at the
from 16.6 % AP to 21 % AP when fused with the LSCONMub-shot level based on the master shot boundary refer-
context models of concepts related to airplanes suchesse [OIKS], where each sub-shot was represented by
airplane taking off, airplane landing, airport etc. Sim@ single keyframe and a corresponding speech transcript
lar improvement is also seen in the case of the concépgment. All ranking results were generated at the sub-
Car whose performance improves from 16.5% with vishot level first and then aggregated at the shot level by
sual SVM detection to 19.6 % with multimodal to 21%aking the maximum confidence score across all sub-shots
with context fusion using concepts such as vehicle, roda; each master shot.
etc. Improvement however was not observed\iater- Changes in our speech-based retrieval (component 1
scape the third concept for which we used context. Thie Figure 5(a)) system this year included retrieval at the
other concepts for which we used context were not evatory level (for improved recall) with re-ranking at the
uated. Newer techniques that we are also investigatsttpt-level (for improved precision), as well as improved
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Figure 5: Overview of IBM automatic search system and its components (a) overview off all system components, (b)
Speech-based retrieval component, and (c) Model-based retrieval component using query text.

parameter tuning for automatic query expansion and reegative sampling and bagging. This year improvement
ranking with the IBM Semantic Search engine (aka Joan be contributed greatly to smarter and more robust data
ruXML) [MMA *02]. For our required baseline, we usethodeling techniques.
only the common ASR/MT transcripts and our shot-level The final component of the IBM automatic search sys-
retrieval system had a MAP score of 0.041. Our improveéeim was the emphasis on multimodal fusion (component
speech-based retrieval system used the story boundai@sFigure 5(a)). We tried out three different multimodal
donated by Columbia University [HCO05], as well afusion approaches—a query-independent non-weighted
speaker segmentation boundaries provided to us by fiaision approach, and two query-class-dependent fusion
NUS team[OIKS], performed significantly better, geneapproaches using strict and fuzzy query class assignments
ating a MAP score of 0.052, or nearly a 30% improvemeof the four components. These approaches generated our
over the baseline. best runs with MAP scores of 0.076, 0.086, and 0.087.
This year we significantly expanded our emphasis
on model-based retrieval and re-ranking using autg—
matic concept detectors for the 39 LSCOM-lite concepts:
We experimented with several approaches for automatigir speech-based retrieval system is shown in Figure5(b).
query-to-model mapping (component 2 in Figure 5(a)) is based on the JuruXML semantic search en-
and weighting from query text, including the lexical angine [MMA*02], which is available in the Unstruc-
statistical approaches we tried last year, as well as a ngifed Information Management Architecture (UIMA)
rule-based ontology mapping approach, resulting in te®K [uima]. For our speech-retrieval baseline, we in-
best MAP of 0.029. dexed the ASR/MT transcripts corresponding to each sub-
Our semantic-based run (component 3 in Figure 5(sf)ot from the master shot reference provided by Fraun-
is interpreting semantic space from Section 2.2 as a tiefer (Heinrich Hertz) Institute in Berlin [Pet]. Each sub-
scriptor space. Our visual (component 4 in Figure 5(shot was first expanded on the left to include the 5 pre-
and semantic retrieval system were an improved combeding sub-shots, and was aligned at the speaker or phrase
nation of two light-weight learning algorithms — modiboundaries for the purposes of speech transcript indexing.
fied k-Nearest Neighbor classifier and SVM with pseudo- In addition to the base UIMA SDK, we used several

1 Speech-based retrieval



UIMA components developed by IBM Research for adionality in the JuruXML search engine. Our final speech-
vanced text analytic. These include the TALENT sydased retrieval system was therefore the combination of
tem for Text Analysis and Language Engineering Tecthree separate automatic query refinement methods—QA-
nology, the Resporator (RESPOnse geneRATOR) syssed query expansion to text categories, Rocchio-based
tem [PBCROO] built on top of TALENT, and the Pl-pseudo-relevance feedback query expansion, and lexical
QUANT Question Answering system [CCCEP4] built affinity-based pseudo-relevance feedback query expan-
on top of RESPORATOR. We used the TALENT comsion. The parameters for each of the methods were tuned
ponent to perform token and sentence detection, lemrg&ebally on the TRECVID 2005 corpus and search topics,
tization, and part-of-speech annotation. The RESPOR#1d the three methods performed comparably on our inter-
TOR component was used to annotate text with over 108l experiments. The ranked lists generated by the three
semantic categories, including both named and unnanaggroaches were therefore fused using a non-weighted
entities, such as people, roles, objects, places, events,atery-independent Round Robin fusion—e.g., min rank
Itis a rule-based annotator developed originally for Quesggregation of individual rank lists.

tion Answering purposes [PBCRO00] and used extensively

by the PIQUANT system. Finally, we leveraged the query At retrieval time, we leveraged the native query expan-

analysis and refinement capabilities of PIQUANT in order (P functionality of the JuruXML search engine to au-

. : . i0
to do automatic query expansion to the categories dete g " :
by RESPORATOR. For example, a query containing t}r:%matlcally refine the query .b.ased on Eseudo Relevance

N N i .Feedback and Lexical Affinities, or pairs of words that
term “basketball” would automatically be expanded to

in- : o
clude the “SPORTS tag detected by the RESPORATAR! 10 co-occur in close proximity of each other (e.g.,

. . . hrases) [CFPS02]. Parameters of this query refinement
component. This essentially performs automatic que[?

. . ) : a}gproach included the number of top documents to con-
sense disambiguation and expansion.

In addition to the RESPORATOR-based query exp sider (pseudo-)relevant, the max number of new query

an- .
sion, we explored two other methods for automatic qug%ms to add, the weight of the newly added query terms,
W

refinement based on pseudo-relevance feedback [XC d dtge Xlﬁ 'gpiﬁgslz)chlaarmgis\,cgIrzt';/fnf dSIenrgleir:i:gl-
which are based on the assumption that the top—rankeq:r ) b h y

documents for a given query are indeed relevant. Tra |S-mg the TRECVIDOS test set, query topics, and NIST-

tional relevance feedback methods such as Rocchio Eggledl\jzgc groun? érng This speech-only baseline run
finement process [Roc71] can then be used to effectivel"i‘/ a score orb.oat.

refine the query. In particular, a set of top-ranked docu-

ments is first retrieved using the original user query. Theln order to improve recall without sacrificing preci-
weight of the query terms is modified according to thesion, we also considered indexing and retrieval at the
frequency in this set. In addition, expansion terms are s&ws story level, with story boundaries automatically ex-
lected from this set, based on various selection criteriegcted and provided by Columbia University [HCO5]. In
and added to the query. The refined query is then subat case, we aligned the raw story boundaries with the
mitted to the system, resulting in the final set of docspeaker/phrase boundaries, and for each story we gen-
ments considered relevant to the original user query. Arated a text document consisting of the corresponding
alternative way to select additional terms for query expaASR/MT transcript. At query time, we first retrieved rel-
sion is to considelexical affinities (LA) which are pairs evant stories, as ranked by the JuruXML search engine,
of terms that frequently co-occur within a close proxinpropagated the score for each relevant story to all sub-
ity of each other (e.g., phrases). The idea is that if osbots in the story, and then fused the results (using simple
of the terms in a lexical affinity appears in the querscore averaging) with the shot-level baseline retrieval re-
text, it is likely that the other part of the LA is also relsults in order to break ties within the same story and re-
evant. An LA-based query expansion method was prmank shots for improved precision. This run generated a
posed in [CFPS02]. We used both automatic query exp&hAP score of 0.052, which is a significant improvement
sion approaches since both are available as native fuothearly 30% over the baseline.



4.2 Model-based retrieval

Model-based retrieval applies the results from off-ine @ /°
concept detection and text analysis to on-line queriesb ©
triggering concept models with different weights. Given @
an arbitrary text- or example-based query, the goal is tt ©
identify which concepts, if any, are relevant to the query. @
and to what extent (i.e., what should the weights for eacl
concept be in a weighted fusion scheme). Once the fine
list of most relevant concept models and weights are de @
termined, we fuse the corresponding concept detection re
sult lists using weighted average score aggregation to ge! c%

erate a final ranked list of shots. This model-based quer ™

result list is then used to re-rank results generated frqtigyre 7: Combination Hypothesis lllustration: each line
other retrieval methods through an appropriate fusiggihresents a primitive SVM hyperplane between the same
method. For all model-based retrieval purposes we Usgd of positive examples (black fill) and a randomly sam-
our detectors for the 39 LSCOM-lite concepts [NSIB]. pled bag of pseudo-negative examples (black edge). Each
When the query-to-concept relevancy is determined bagg@n-dot circle represents a single CBR topic.
on query text alone, we considered a lexical approach
to text to model mapping. This is the same approagiiensional. We fix the kernel type to Radial Basis Ker-
that we used last year at TRECVID [AADS5] and it nels, and select global SVM kernel parameters for each
uses the WordNet-based Lesk similarity relatedness mgascriptor to avoid over-fitting. Since there is no negative
sure [BPOS, PBPOS] to Compute the lexical Slmllarlty b%’xamp|es provided’ we generate pseudo_negative exam-
tween the query text and the textual description for eagl@s by randomly sampling data points. We build a set of
concept model [HNO6]. This approach results in the bgsimitive SVM classifier whereby the positive examples
overall MAP of 0.029, and itis illustrated in Figure 5(c).are used commonly across all classifiers but the pseudo-
negative data points one from different sample set. The
_ ; SVM scores corresponding to each primitive SVM model
4.3 Content-based Modeling trained are then fused using AND logic to obtain a final
IBM TRECVID search visual and semantic based corfliscriminative model, as illustrated by the dividing lines
ponents are relying solely on query topic visual exarift Figure 7. SVM-based search method proved to signif-
ples. Thus, the underlying retrieval approach is essentidftantly improve the retrieval results over MECBR-based
the same for both components. We termdhtent-based baseline approach, resulting in over 50% MAP improve-
approach Content-based approach uses the unique &pent for the color modality [NNTO05] over TRECVID
proach of formulating the topic answering problem as2903 search topics.
discriminant modeling one. The major improvement this
year is in the area of data modeling.

Our baseline method, used in [AAD5] combination
hypothesis, fuses the selective MECBR (multi-exampl®r the video search experiments, we are faced with the
content based retrieval) approach with the discrimindirhiting factor of having avery small number of distinct
SVM (support vector machines) one. Detailed baselipesitive examples, and no negative examples. We over-
implementation is presented in [NNTO5]. Figure 7 illussome these challenges by (a) fusing a number of primitive
trates the basic idea. Circles show a a single CBR, aBdM predictions trained on the same set of positives and
MECBR baseline is achieved using OR logic. SVM apmlifferent views of pseudo-negative selection data points
proach with nonlinear kernels allow us to learn nonlineao that the final SVM model corresponds to the intersec-
decision boundaries even when the descriptors is hightiltn of several hyper-spaces, and (b) sampling pseudo-

4.3.1 Descriptor Space Modeling
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Figure 6: Overview of the content-based components of IBM automatic search system (a) Visual-based retrieval
component, and (c) Semantic-based retrieval component using query topic examples.

negative data points so that they model the test spawéze the under-sampling rate of negative examples while
well. The objective here is to carefully select the pseudavoiding the imbalance problem in the learning process,
negatives to model the input space well, and to balarmed therefore we need to maximize the ratio of negatives
the number of pseudo-negative data points for trainiagd positives rather than number of negatives alone. We
with number of positive examples to avoid the imbalanesloptedN = 50 as a fixed pseudo-negatives bag size
problem in the learning process [AKJO4]. The inheriteid [NNTO05]. To maximize the number oV per model,
objective is to maximize the number of selected pseudee revisit this assumption here, and makex function of
negative data points in the descriptor space. We propd3éor every topic, whereP is the number of visual exam-
to: ples per topic. As reported in [AKJO4], maximum ratios
maximizethe number of pseudo-negative data poingould be less than 1@naz{N/P} < 10) so that SVM
under constraints of imbalanced learning and complexigjassifiers perform correctly. Descriptor space modeling

and using pseudo-negative data selection involves two stages:
carefully select data points so that the descriptor spa@ sampling of the data points and (b) selection of the
is well represented. data points for each primitive SVM. We investigate two

Imbalanced ratio In the SVM fusion framework of @PProaches to pseudo-negative sampling/of K" points
primitive models, we selecV pseudo-negative points forfom the dataset,gaz{N/P} < 10):

training from the targeted set, givan positive external random Select N random points from the whole

examples for sampling for each primitive SVM mOdeHatastet for each of th& primitive SVM models
and K primitive SVM models to be fused for final mod-

eling. In selecting the number of pseudo-negative poirdisister The core idea is to utilize supervised and unsu-
N for each primitive SVM model, the objective is to minpervised classification in concert in a light-weight learn-
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ing process that generates smaller more effective modéie relationship of features to the semantics of individ-
To model the high-dimensional target space well, we clugal queries. We selected top 4 diverse descriptors based
ter the semantic space using k-means clustering so thatdhetheir overall most robust MAP in previous experi-
resulting number of clusters be up2o N x K, and then ments [NNTO5], as described in Section 2. All the ap-
randomly seleciV points from the centroid set as pseudgroaches were tested féf=10, andN=10*P. Bagging
negatives for the primitive SVM model. method exhibited low MAP in these experiments. This
Increasing number of positives is not such an easy taskot surprising, since using pseudo-negatives from only
considering the fact that positive examples are usuatige cluster can actually enable low selectivity in a high-
not from the target set, and their distribution might b&imensional feature space. The overall improvement of
different that the target space distribution. Thus, ovehe cluster methods over baseline MECBR (up to 100%
sampling the data in the query semantic space might ftor the local color), and over SVM random baseline (up
ther skew the SVM learning, and strongly influence the 35% for texture). Next, we fuse the visual runs us-
performance. Instead, we consider the data points in thg proposed combination hypothesis and data model-
target semantic space i.e. potential near-duplicates of ithg approaches, as shown in the Table 4.4. This exper-

. il £y
positive examples on the targeted space. Probability fQlisual T RANDOM | CLUSTER | OUT | EUSED

near-duplicate positive example is low since the exa“rlzoos 0.0877 0.0853 | 008821 0.0880

ples are usually not from the targeted set. We investigM%006 0.0012 0.0040 1000721 0.0065
various approaches to pseudo-positive sampling of poihts : ; : :

from the dataset: Table 3: Data sampling influence on mean average pre-
RANDOMEstablish a low threshold= 0.01 distance. Cision (MAP) of the fused visual runs over methods and
If selected data point is within range of positive exampl@€Scriptors
we treat it as a positive example, as increasing the numbaents confirms our findings that better modeling of the
of positives will not only infuse training process. input space is relevant when topic topics have low AP.
BAGGINGBagging approach uses random data sa@805 dataset contained more visually relevant queries,
pling and clusters selected data samples in order to selawdl fusing the visual runs over descriptor spaces results
a set of pseudo-negatives for primitive SVM approach. in the close AP, regardless of the data modeling method.
CLUSTERFrom2 x N x K cluster centroids, for each2006 dataset contained small number of visually “simple”
of P external examples per topic, select the cluster cefseries, and thus the performance measure was strongly
troid closest to that data point, and treat it as a positiirfluenced by data modeling methods, resulting in aver-
example. age improvement close to 500 %. We find that applying
OUT approach uses the same approach as cluster, fauttiple biased sampling and selection method across va-
the pseudo-negatives are not sampled from the targatiedy of features results in enhanced performance over any
set but from the outside set in the same domain. Thithe baseline models. More importantly, we have proved
approach is feasible only for visual-based approach as tvat the sophisticated approach to modeling of the training

use 2005 development set as an outside set. samples improves the visual search and consistently im-
FUSEDapproach fuse€LUSTERandOUT approach proves the text baseline over range of visual samples and
using statistical averaging. range of visual support of the diverse topics in TRECVID

Training is further boosted by assigning a positive labkeénchmark: up to 53.43 % for 2005 and 21.54 % 2006
to a set of clusters closest to the positive data points whitRECVID topics. We are working on context-based mod-
allows for the larger selection of pseudo-negati%som eling of negative samples for each primitive model, and on
upto2 x K x N cluster centroids. further up-sampling positive examples.

4.4 \Visual-based retrieval 45 Semantic-based retrieval

ur visual-based approach is shown in Figure 6(a). D&emantic space is different than the low-level descriptor
scriptor selection is a difficult tasks since we don’t knoapace. In practice, the state-of-art is to apply low-level
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TRECVID 2005 Retrieval Performance in SEMANTIC | KNN SVM SVM
Vector Spaces RANDOM CLUSTER

|E|GIDbaICOIur B Local Color OGlobal Texture OLocal Texture B Semantics | 2005 000008 006748 007055
i 2006 0.00146| 0.03299 0.03698
0.08 -
0.07 S ot i Table 4: Data modeling influence on mean average preci-
0.06 sion (MAP) of the individual semantic runs
0.05
0.04
0.03 1 negative ones. In conclusion, more robust modeling of the
0.02 A semantic space results in improved baseline semantic per-

formance of over 12% in the wide range of complex rare
topics and video datasets.

random SVM approach cluster

Figure 8: Retrieval performance of two svm-based datag Multimodal Fusion and Reranking
modeling approaches in the low level descriptor space

(color and texture) and in the semantic space evalualdte final component of the IBM automatic search sys-
on TRECVID 2005 topics. tem this year was the emphasis on multimodal fusion.
We have explored query-dependent search fusion among
the text, model, semantic and visual retrieval scores. We
image feature extraction techniques to the visual data andd out three different fusion approaches — a query-
build classifiers from the extracted features. HOWGV%dependent non-Weighted fusion approach, and two
feature, parameter, and method selection for each of th%ry-dass-dependent fusion approaches using strict and
concepts varies, and models, in general, do not share fiigzy query class assignments.
commonality. Thus, semantic space is highly non-linear\ye analyze the input query text in order to generate
as the dimensions it is comprised of use different aggery features and assign them to query classes. We use
proaches and parameters. Euclidean distance as a M@sisemantic analysis [uima, CCE®4] engine to tag the
sure of closeness and distance does not make much S@Refy text with more than a hundred semantic tags, the
in this space. Thus, we adapt our baseline method, aggs include person, geographic entities, objects, actions,
use only SVM portion of it, as MECBR does not makgyents, etc. For example, "Hu Jintao, president of the Peo-
sense. As for the data modeling approach, as we do gRi's Republic of China” would be tagged with "Named-
have any development sets to learn semantic modeIs,Fyéqeson’ President, Geo-political Entity, Nation”.
compareCLUSTERapproach tiRANDOMbaseline one.  qclass query-class dependent weights. We assign
To further examine the feasibility of search in semantic,ch query into one of seven pre-determined classes. Ties
spaces, we compare the data modeling results in diffgra proken according to the concept detectors or retrieval
ent vector spaces for random and cluster data modelg}gbine performance in the state-of-the-art. Weights for
methods over TRECVID 2005 dataset. We compare thgch class are taken as the set that maximized the average
performance in the four chosen descriptors to the perfgfsrformance metric for all training queries in the class.
mance in the 39-dimensional semantic space, as ShoWgf non-differentiable performance metrics, this can be
Figure 8. We see that data modeling in semantics Sp@gfie by either exhaustive search on a few dimensions, or
outperforms modeling in any of the descriptors space R¥ristic search with restart on a few dozen dimensions.
50% to 180% for both approaches, and can potentially eNQcomp query-component dependent weights. This ex-

hance content-based search. tendsQclassby allowing overlap in the seven query fea-
We proposed to use cluster method as a way to comptmes. An optimal weight are similarly learned over the set

sate for over-fitting on the skewed data distribution, and o training queries with this component by maximizing

diversify the data in the modeling setup, both positive atite average performance metric. Weights for a new query
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is computed as averaging the optimal weights among a i i el
of its active components. 01

We use the 24 queries from TRECVID 2005 as train-
ing queries to learn a set of linear combination weights oo
The per-class or per-query weights are learned with ex
haustive search over the text, model, and visual score
In strict query class assignments the new queries woul
use the optimal weights for that class, in fuzzy query as
signments the new queries would use a mixture of th
optimal query-specific weight based on the cosine dis
tance of the new query to the training queri@slassand i lﬂﬂﬂﬂﬂﬂnmm
Qcompquery-dependent fusion schemes had yielded 149 R s RSRARIEER
and 13% relative improvement from query-independent
fusion, respectively. These approaches generated our IFégtire 9: Mean Average Precision performance of auto-
runs with MAP scores of 0.076, 0.086, and 0.087. matic and manual submitted runs. IBM Research runs in

blue, others in yellow.

0.06

0.04 4t

Mean Average Precision

0.02 4t

4.7 Experiments and Results _
TRECVID06 Automatic and Manual Search
(Per-Topic Performance of Best IBM vs. Best Overall)

We submitted 5 automatic type A runs for this year's |

= Best IBM O Best Qverall
Search Task, which are listed with their corresponding
MAP scores in Table 5 and in Figure 9. |
[ RunID | Run Description] Run MAP | ||
F_A_1.JW_Base6 Text 0.0405
F_A_2 JW. Story3 | Text+Stories 0.0518
FA_2.JW.Qind 5 Simple Fusion 0.0756 |
F_A_2_JW_Qcomp?2 | Strict Fusion 0.0855 L] mﬁ o mm ™ rﬂrﬂ'—(j e
F_A_2.JW._Qclass4 | Fuzzy Fusion 0.0867 g RTREER2BE RS EEEE88 50835838

Topic Number

Table 5: Mean Average Precision scores for all IBM au-
tomatic search submissions. Figure 10: Average Precision comparison of the best IBM

_ automatic search type A per-topic result vs. best overall
Our text-based system used JuruXML semantic seagghtomatic and manual type A per-topic one.

engine and several UIMA components developed by IBM

Research for advanced text analytics. Baseline text run

had our lowest Mean Average Precision of 0.0405, bstatistically normalized scores resulting in 0.0756 MAP
but performed competitively as it ranked in the top 2@&nd 87% improvement over text-only baseline.

of all automatic and manual runs as shown in Figure 9.The highlight of our system this year were the top per-
We also considered retrieval at the news story level, wiitrming two query-class-dependent fusion approaches us-
story boundaries automatically extracted and provided img fuzzy and strict query class assignments. In strict
Columbia University [HCO5]. This resulted in MAP ofquery class assignments the new queries would use the
0.0518 and 11th best overall run, see Figure 9. Our toptimal weights for that class, in fuzzy query assign-
three runs were based on the fusion with ranked lists gements the new queries would use a mixture of the op-
erated by speech-based, visual-based, and semantic-btsed query-specific weights. Th&classand Qcomp
runs, and re-ranked using model-based approach. Figstery-dependent fusion schemes has yielded 14% (0.0867
runs were fused using simple non-weighted averagingMAP) and 13% (0.0855 MAP) relative improvement from
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qguery-independent fusion and 115% and 111% improvew-level audio-visual features have been applied for de-
ment over text-only baseline, respectively, see Figuretécting generic frequently observed semantic concepts
Detailed per-topic analysis of the best overall average psech as indoors, outdoors, nature, man-made, faces, peo-
cision of all submitted automatic and manual type A runqde, speech, music, etc. Statistical modeling requires large
vs. best IBM automatic type A run in shown in Figure 1@amounts of annotated examples for training. Since this
Mean average performance of best IBM automatic types&enarios is not feasible in the rushes archive, we adopt a
runs over individual 24 topic is 0.0951. Overall, our imrew approach for automatic semantic tagging. We re-use
proved speech, semantic and visual approaches and qegigting semantic models, trained on the produced news
dependant fusion approaches were the key performanoe multimedia data, to automatically associate confi-
contributors for our system. dence scores of rushes data with those cross-domain con-
cept models. To enable cross-domain usability, we chose
the general semantic models from LSCOM [N'9B]
5 Interactive System Improvements lexicon, based on the consistent definitions of the concept
across different multimedia and video domains (photo al-
In this section, we present some of the improved capalsidms, web, news, blogs, raw video).
ities of the Marvel system that allow for (a) automatic la-

beling and grouping of multimedia content using eXiStir@luster labeling In this demo we present a novel ap-

metadata and semantic concepts, and (b) interactive ¢ f5ach for labeling clusters in minimally annotated data

text driven tagging of clusters of multimedia content. Pr ichives. We propose to build on clustering by aggre-

posed_ system Iev_erages e>_<isting metada_tainfo ir_1 conjuagﬁng the automatically tagged semantics. We propose
tion with automatically assigned semantic descriptors. and compare four techniques for labeling the clusters

and evaluate the performance compared to human labeled
5.1 Indexing Multimedia Content ground-truth. We define the error measures to quantify the
results, and present examples of the cluster labeling re-
Metadata Digital image metadata, information abousults obtained on the BBC stock shots and broadcast news
digital images, plays a crucial role in the managementvitieos from the TRECVID-2005 video data set[TS06].
digital image repositories. It enables cataloging and main-
taining large image collections, and facilitates the search . .
and discovery of relevant information. Moreover, descrip-2 Overview of Interactive System Im-
ing a digital image with defined metadata schemes allows ~ provement
multiple systems with different platforms and interfaceis

. nteractive search in Marvel consisted of searching by
to access and process image metadata. Importance.Q

metadata and its widest use propelled the developmen A&f&alhfiﬁ;irgsté:;ﬁi'bsssda?en?/eTOdgtvté?fjd;gavrv(;hn' i ﬁ‘)l'

new standards for digital multimedia data schemes. Th esﬁgabgie the user to e?vich the con)ftep;lt with s,ub'ective in-

metadata schemas provide a standard format for the cre- . )

ation, processing, and interchange of digital muItime(;‘tl?ilrloretat'OnS of the content. Recently, we enriched our
’ ' : : system with the functionality 6fAGGINGand GROUP-

metadata, and enable multimedia management, analy

indexing, and search applications [Tes05] I %3 of video shots or images. While tagging manipu-
’ ' lates the metadata, grouping improves the visualization

of query results. Figure 12(a) shows an example flow of
Automatically Tagged Semantics Explicit modeling how a user could retrieve a meaningful result set from the
of semantics allows users to directly query the systesystem. The first step is to collect an initial set of mul-
at a higher semantic level. For example, powerful tectimedias by e.g. querying for the text "basketball”. The
nigues have been demonstrated in the context of the NI&Bulting set is grouped by e.g. corresponding semantic
TRECVID video retrieval benchmark [AAQD5]. Fully- clusters, generating groups with labels like "Person, Stu-
automatic approaches based on statistical modelingdd, Indoors” or "Military, Vehicle, Road”. The displayed
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(a) Interactive Search Example (b) Grouping using Clusters

Figure 11: (a) IBM Marvel multimedia analysis and retrieval system used for interactive search (results for qry194),
and (b) first page search results grouped by visual clusters.

groups can be immediately tagged with whatever the use2. collect group labels for every single multimedia in

associates with them. In Figure 12(a), such a tag could be the current result set that matches the selected cate-
"Jack’s birthday”. gory

3. group images/shots in the result list by common label

5.2.1 Semantic grouping of Query results 4. put allimages/shots belonging to the same group into

a visual container labeled with the group label and

Assume a user, having collected a sizeable video data set display them as shown in figure 11(b)

for the topic of interest would like to visually summarize

video content before deciding on the next step. Our sys\pte that the order, in which the images/shots were
tem offers the possibility to improve the visualization ofrranged in the original set reflects the relevance of the
query results by grouping them using existing metada{garch result in descending order. We try to preserve this
and clusters. Depending on which data were extracted, ¥ger in the groups as good as possible. Whatever group
can group by certain EXIF metadata [Tes05] like flash/qge first multimedia in the result set belongs to will always
flash, date when the picture was taken, any metadata@sdisplayed as the first group. If the second multimedia
sociated with the particular video shot (i.e. video namgelongs to the same group, we proceed to check the next
channel etc.) as well as by automatically labeled visugitimedia. Figure 11(b) illustrates how groups are vi-
and semantic clusters [TS06]. The groups are computgfhlized to the user. This result set was grouped by vi-
dynamically, by initiating on the result set which is cursya| clusters and shows the value of the grouping feature
rently displayed on the screen, and the following steps &y well. The first group contains items belonging to the
taken: visual cluster "Indoors, NOT Day, NOT Outdoors, NOT
Water, NOT Sky”, items in the second group belong to the
1. determine the grouping category (e.g. visual clusisual cluster "Nature, Person, Greenery, NOT Building,
ters) Outdoors”.
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Figure 12: (a) Overview of the summarization, grouping, and event tagging capabilities the interactive system, (b) a
tag cloud visualizes the most frequently assigned tags.

=<Previous | Nextss

p Tagging. The idea of assigning metadata to web pages has
Hame: sholf3_110_RKF a long history. Since text search engines like Altavista,
Shot Id#: 53892

Google and Yahoo came up, authors of web pages used
— “ the HTML 'meta’ directive to assign keywords that de-
* VIDEOS@TRECVYID2005_63 (1} . . .

scribe the content. Recently, this idea has also become
very popular in the field of multimedia search engines.

7

* Concepts@Animal (13

RS < The IBM Marvel system offers several ways (low-level
——— .y . search, model-based search, text search) to retrieve items
* Concepts@Waterscape_Waterfront (1} . .
———————— * SEANTIC@MY14- Animal, Snan, that match the topic of interest. The latest feature added to
Waterscape_\Waterfront, Mountain . . . .
ﬁf.if;g&?mh o Marvel enables the user to assign subjective tags to multi-
. color_photo . - . - . .
i « VISUAL@CHGAS- NOT Flag-US, NOT media content. The basic idea behind the introduction of
I in simir (o oo Frv the tagging concept is to enable event-based annotation.

[ Find similar (by calor)}

B Find similar (by texture)

[wme] Finet similar (y texture))
M Find similar (by semantics}

=y 1 Assigning the same tag to different group of items can de-
scribe an event that one can search for later on. Tagging
in Marvel currently covers:

vacation (1}
* california (1)
e water (1)

* sea(l) .
* sy (1) e add/delete one or more tags to/from a single shot

= dolphin (1)

e add/delete one or more tags to a group of shots

Figure 13: Single item and associated metadata overvieve add or more tags to an arbitrary query result
in IBM Marvel with the possibility to add/remove tag(s) e search for shots that were tagged with the same label
5.2.2 Tagging of multimedia content e visualize the most frequent tags in the collection

The tagging concept has recently become very popukagure 5.2.1 shows how operations applied to single mul-
among internet users. People upload their personal ptimedias are integrated into the Marvel user interface.
tos to online communities, share them with other usafe use different confidence values, to distinguish such
and assign keywords (i.e. Tags) which describe the cdgroup tags” from tags that were assigned to a single shot.
tent from a personal point of view. Tags are freely choséthough we don’t evaluate the confidences for tags, we
labels that help to improve a search engine’s effectiven@sght consider doing that in the future.

because content is categorized using a familiar, accessi©nce a reasonable number of tags has been assigned
ble and shared vocabulary. The labeling process is caltedthe multimedia collection, it's meaningful to get an
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overview of the most frequent tags. Therefore we imples reduce the cost of annotation and labeling in an in-
mented the commonly known idea of the "Tag cloud” iteractive environment. However, one of the challenges
which most frequently used tags are depicted in a largdrthese multimedia retrieval systems is to organize and
font, while the displayed order is alphabetical (see Figresent the video data in such a way that allows the user
ure 12(b)). Showing all tags would make the tag cloud most efficiently navigate the rich index space. The in-
unreadable, so we only consider the top 2000 tags. WHermation needs of users typically span a range of seman-
hovering over a tag within the cloud, a tool-tip appeati& concepts, associated metadata, and content similarity.
saying how many pictures are associated with this talye propose to jointly analyze and navigate metadata, se-
This features enables smooth browsing and simplifiethntic and visual space for the purpose of identifying
view of one domain when we have a high number okew relationships among content, and allowing user to
tags/concepts/videos/etc. link the aggregated content to a complex event descrip-
tion. As a result, intersection of different modalities, se-
. mantic grouping of search results, and tagging capabil-
5.3 Interactive Search ity on the group level in IBM Marvel system greatly help
summarize and overview the content of this year's BBC

The IBM Marvel Multimedia Analysis and Retrieval Sys-rushes dataset. Cluster labeling [TS06] helped us sum-

tem was used for our interactive search run. Marvel pro-_ . : . .
rize and select relevant visual and semantic clusters in

vides search facilities for content-based (features), moc%'é1 rushes data. Moreover. we have the capability to ta
based (semantic concepts) and text-based (speech termrs§ ' ' P y 9

: a result grouping set that was dynamically collected us-
querying. Marvel allows users to fuse together mu“:llﬁ e.g. low-level feature search or model-based search
ple searches within each query, which was typically do bl — : : . o
for answering the TRECVID query topics. This year’?o assign a high-level human interpretation to this specific

: . . Jslesult. Let's say a user retrieves all multimedias that show
improvements to the system include more user-frien
interface, extended capabilities using existing metadat a

bme kind of sports (query: Concepts@sports) and in-
o : Fsects it with multimedias that show soccer (low-level

better summarization of target search data using CllfleS

tering, grouping and intersection functions. Given th

ature search). Having collected this set of multime-
statement of information need and query content, t 55’ Ehe us"er might ?SS'gn tags I|ke_ soccergame’, “ger
. . . many” and "worldcup” or any other high-level interpreta-
user would typically issue multiple searches based gn . . .
10n he/she associates with the result set. This enables user
the example content, models and speech terms.

year, the results from an automatic run were used tf)('ﬁag events discovered in rushes-type of dataset. An on-
S . . : ; line demo of the BBC 2006 rushes can be accessed from
kickoff the interactive search. Figure 11(a) '"us”at%sttp'//mm watson.ibm.com/BBC/
the Marvel multimedia analysis and retrieval system. "’ ' R '
An on-line demo of the system can be accessed from
http://mp7.watson.ibm.com/marvel/. IBM Marvel inter-
active search run MAP was 0.1216. Detailed inspection
of the results revealed that our cut-off limit was set too

high. As a result, third of the dataset was not ingested in
the system nor evaluated. 6 Conclusion

5.4 BBC Rushes o _ ,
IBM Research team participated in the TREC Video Re-

If there is no information about the multimedia contentieval Track Concept Detection, Search, and Exploratory
the only effective search is to browse through the numeasks. In this paper, we presented preliminary results and
ous folders to find the right photo or video shot. Multiexperiments for the Search task. More details and perfor-
media management programs have the capability to exance analysis on all approaches will be provided at the
tract knowledge from heterogeneous data sources, dRECVID06 Workshop, and in the final notebook paper.
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