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Abstract

Our experiments in TRECVID 2006 include participation in the shot boundary detection, high-level feature
extraction, and search tasks, using a common system framework based on multiple parallel Self-Organizing Maps
(SOMs). In the shot boundary detection task we projected feature vectors calculated from successive frames on
parallel SOMs and monitored the trajectories to detect the shot boundaries. We submitted the following ten runs:
• PicSOM CA: cut-optimized using all the training videos
• PicSOM GA: gradual-optimized using all the training videos
• PicSOM BA: optimized for both cuts and gradual transitions using all the training videos
• PicSOM CN: cut-optimized using only the news videos (without the NASA videos)
• PicSOM GN: gradual-optimized using only the news videos
• PicSOM CS: cut-optimized using channel-specific training videos
• PicSOM GS: gradual-optimized using channel-specific training videos
• PicSOM CNF: cut-optimized using only the news videos and only a few features
• PicSOM CNE: cut-optimized using only the news videos and one additional edge feature
• PicSOM CAE: cut-optimized using all the training videos and one additional edge feature
The trajectory-based method seemed to work comparatively well in the task. By comparing the F1 scores of the
runs we found out that the results mostly degraded when using only a portion of the data in training. Especially
the channel-specific detectors seemed to suffer from overfitting and did not work well probably because of the low
amount of channel-specific training data compared to the number of adjustable parameters.

In the high-level feature extraction task, we applied a method of representing semantic concepts as class models
on a set of parallel SOMs, combined with an inverse file created from automated speech recognition and machine
translation (ASR/MT) data. We submitted six runs as follows:
• A SOM F3 6: still-image and video features
• A SOM F4 5: visual features and ASR/MT data
• A SOM F5 4: visual features and stemmed ASR/MT data
• A SOM F6 3: visual features and ASR/MT and closed-caption data
• B PicSOM F7 2: visual features and LSCOM concepts
• B PicSOM F9 1: visual features, ASR/MT data and LSCOM concepts
We observed increase in performance when adding both textual features and the auxiliary concepts to the visual
features baseline.

In the search task, we submitted a total of six runs (five automatic and one interactive run). Our method used
SOM and inverse file indices from visual and textual features combined with class models of appropriate semantic
concepts. The overall settings for the runs were as follows:
• F A 1 OM-f1 6: baseline automatic run using only ASR/MT data
• F A 2 OM-f2 5: automatic run using only visual features
• F A 2 OM-f3 4: automatic run using ASR/MT data and visual features
• F B 2 OM-f4 2: automatic run using ASR/MT data, visual features, and LSCOM concepts
• F B 2 OM-f5 3: automatic run using either only ASR/MT data or visual features and LSCOM concepts, selected

by named entity detection
• I B 2 OM-i 1: interactive run with ASR/MT data, visual features, and LSCOM concepts
Using class models created from the LSCOM concepts improved the retrieval performance as measured by MAP
scores. Also the entity detection in the last automatic run proved successful and seems to be a promising topic for
future experiments.



I. INTRODUCTION

In this paper, we describe our experiments with the
PicSOM system in TRECVID 2006. We participated in
the shot boundary detection, high-level feature extrac-
tion, and automatic and interactive search tasks.

In 2005, the first year that we participated in
TRECVID [1], we showed that our existing system
for indexing multimodal hierarchical objects using Self-
Organizing Maps (SOMs) and relevance propagation was
suitable for digital video retrieval, and the results com-
pared promisingly with other systems. The basic system
and methodology used this year is partially the same as
in TRECVID 2005, but we also tested some evolutionary
improvements to our old methods in combination with
some new ideas and concepts. Many of these proved
to have a positive impact on performance. When using
only visual features and ASR/MT data, the 2006 system
is comparable to the one used in 2005, although this
year we had an extended set of visual descriptors. By
comparing the results of these two years, we judge that
the search tasks were more difficult this year than in the
previous year.

A completely new task for us this year was shot
boundary detection, where we proposed a novel idea
based on tracking trajectories of projected feature vectors
on parallel SOMs. The results were quite promising.

In the high-level feature extraction task, we applied
our method of representing semantic concepts as class
models on a set of parallel feature indices. This year
we also utilized positive and negative auxiliary concepts
from the Large Scale Concept Ontology for Multimedia
(LSCOM) ontology [2]. In the search task, we used the
LSCOM concepts as well, by matching of synonymous
words using WordNet [3], in addition to textual and
visual features.

The rest of the paper is organized as follows. The
PicSOM system for video retrieval and the used visual
and textual content descriptors are briefly described in
Section II. A novel solution to the shot boundary detec-
tion task is described in Section III. Our experiments
for the high-level feature extraction and search tasks
are described in Sections IV and V, respectively, and
conclusions are presented in Section VI.

II. INDEXING VIDEO WITH PICSOM

The PicSOM system [4] is a general framework
for research on content-based indexing and retrieval of
visual objects. The system is based on using several
complementary Self-Organizing Maps (SOMs) [5], each
trained with separate feature data. The SOM defines

an elastic, topology-preserving grid of points that is
fitted to the input space. The distribution of the data
vectors over the map forms a two-dimensional discrete
probability density. As a result, the different SOMs
impose different similarity relations on the objects. The
task of the retrieval system then becomes to select,
weight and combine these similarity relations so that
their composite would approximate the human notion
of similarity in the current retrieval task as closely as
possible. The parallel SOMs can also be augmented
with other types of additional information and different
indices. For the TRECVID 2006 evaluations, such a
source of information is the ASR/MT text output, for
which the inverted file provides an effective indexing
structure.

Ordinary retrieval usage of the PicSOM system is
based on relevance feedback: the user determines the
relevance of all returned objects and marks the ones
she considers relevant to the current task; the others are
deemed non-relevant. The SOM units on all maps are
awarded positive and negative scores for every relevant
and non-relevant object mapped in them, respectively.
The system remembers all responses the user has given
since the query was started in these sparse value fields.

Due to the topology preservation property of the
SOM, we are also motivated to spread this relevance
information to the neighboring map units on the SOM
grids. Spreading of the response values can be performed
by convolving the sparse value fields with a tapered
kernel function. This results in polarization of the entire
map surface in areas of positive and negative cumulative
relevance.

By locating a given database object in all SOM
indices, we get its relevance scores with respect to the
different features. Then, as the response values of the
parallel indices are mutually comparable, we can deter-
mine a global ordering and the overall best candidate
objects using simple unweighted linear combination.

To support multimodal fusion, e.g. between the differ-
ent modalities of the video objects (visual, aural, textual),
a hierarchical approach has been employed [6]. The
multimodal hierarchy for video shots used for indexing
the TRECVID 2006 collection is illustrated in Fig. 1.
The video shot itself is considered as the main or parent
object in the tree structure. The key frames (one or more)
associated with the shot, the audio track, and ASR/MT
text are linked as children of the parent object. All object
modalities may have one or more SOMs or other feature
indices, and thus all objects in the hierarchy may have
links to a set of associated feature indices.
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Fig. 1. The hierarchy of video and multimodal SOMs.

In indexing the video shots of the TRECVID 2006
collection, we used in total six video features and ten
still image features. An aural feature was also tried, but
later discarded as it did not perform particularly well.
A separate 256×256-sized SOM was trained for each
of these features. For the ASR/MT output, we used a
concept-wise text feature based on an inverted file in the
high-level feature extraction task. For the search task an
inverted file of all the words used were created. All these
features are briefly described below.

A. Video features

On the video shot level, we used the MPEG-7 [7]
Motion Activity descriptor (MA) and temporal versions
of five still image features. The temporal features were
based on the following still image features (which are
not MPEG-7): Average Color, Color Moments, Tex-
ture Neighborhood, Edge Histogram and Edge Co-
occurrence. The still-image features are calculated for
five spatial zones for each frame of the video clip. These
results are averaged over the frames contained within
each one of five non-overlapping temporal video slices.
In this way we get a final feature vector that describes
the changes of the still image descriptors over time in
different spatial areas of the video.

The Average Color feature vector is a three-element
vector that contains the average RGB values of all the
pixels within the zone. The Color Moments feature treats
the HSV color channels from the zone as probability
distributions, and calculates the first three moments
(mean, variance and skewness) are calculated for each
distribution.

The Texture Neighborhood feature is calculated from

the Y (luminance) component of the YIQ color represen-
tation of the zone pixels. The 8-neighborhood of each
inner pixel is examined, and a probability estimate is
calculated for the probabilities that the neighbor pixel
in each surrounding relative position is brighter than
the central pixel. The feature vector contains these eight
probability estimates. Edge Histogram, is the histogram
of four Sobel edge directions. It is not the same as
the MPEG-7 descriptor with the same name. Edge Co-
occurrence gives the co-occurrence matrix of four Sobel
edge directions.

B. Image features

For the key frame indices we used a set of five
standard MPEG-7 descriptors; Color Layout, Color
Structure, Dominant Color, Scalable Color and Edge
Histogram. The descriptors were extracted globally from
every key frame in the collection, i.e. no segmentation
or zoning was used.

In addition to the MPEG-7 features, we also used
the same non-standardized still image features that were
used with the temporal video descriptors. These were
calculated for the five spatial zones of each image and
the values concatenated to one image-wise vector.

C. Text features

Unlike the other features, an inverted file instead of
a SOM index was used for the ASR/MT output. The
extension of the PicSOM system for using such indices
in parallel with the SOMs was presented in [8].

For the high-level feature extraction task, the text fea-
tures were constructed by gathering concept-dependent
lists of most informative terms. Let us denote the number
of shots in the development set associated with concept
c as Nc and assume that of these shots, nc,t contain the
term t in the ASR/MT output. After preprocessing and
stemming, the following measure is applied for term t
regarding the concept c:

Sc(t) =
nc,t

Nc
−

nall ,t

Nall
,

where Nall is the total number of shots in the whole
development set, and nall ,t is the number of those that
contain the term t. For every concept, we record the 100
most informative terms and use them as alternative text
features.

III. SHOT BOUNDARY DETECTION

We participated in the shot boundary detection task
for the first time this year. Our approach in this task
was to use the topology preservation properties of SOMs



in spotting the abrupt and gradual transitions. Multiple
feature vectors calculated from consecutive frames were
projected on two-dimensional feature-specific SOMs.
The transitions are detected by observing the trajectories
formed on the maps.

Due to the topology preservation, similar inputs are
mapped close to one another on the SOMs. The trajec-
tory of the best-matching map units of successive frames
thus typically hovers around some region during a shot,
if the visual content of the video measured by the feature
vectors does not change too rapidly. Abrupt cuts are
characterized by sudden trajectory leaps from one region
on the map to another, and gradual transitions on the
other hand are characterized by a somewhat rapid drift
of the trajectory from one region to another. Our detector
tries to detect these kind of characteristic phenomena.

To increase detector robustness and prevent false posi-
tive cut detection decisions e.g. due to flashlights, we do
not only monitor the rate of change of the map position
between two consecutive frames, but take small frame
windows from both sides of the current point of interest,
and compare the two frame windows. A circular area
with a constant radius is placed over each map point in
the given frame window as illustrated in Figure 2. We
call the union of these circular areas the area spanned by
the frame window. If the areas spanned by the preceding
and following frame windows overlap, there are some
similar frames in both of them, and we decide that the
current point of interest is not a boundary point. If there
is no overlapping, the frames in the frame windows are
clearly dissimilar, and we decide that we have found a
boundary. The flashlights are characterized by sudden
trajectory leaps to some region on the map followed by
a leap back to the original region. If the duration of
the flashlight is smaller than the frame window size, the
proposed method helps to avoid false positives.

The final boundary decision is done by a committee
machine that consists of this kind of parallel classifiers.
There is one classifier for each feature calculated from
the frames, and each classifier has a weight value. The
final decision is made by comparing the weighted vote
result of the classifiers to a threshold value. Abrupt
cuts and gradual transitions are detected using the same
method. The detected boundary points that are close to
one another are combined, and as the result we get the
starting locations and lengths of the transitions. To fa-
cilitate detection of slow gradual transitions, our system
also allows to use a frame gap of given length between
the two frame windows. A more detailed description of
the algorithm is given in [9].

TABLE I
AN OVERVIEW OF THE SHOT BOUNDARY DETECTION TASK RUNS.

Videos Features Trans.
# Run id All News Ch. - Norm. + Cut Grad.
1 PicSOM CA • • •
2 PicSOM GA • • •
3 PicSOM BA • • • •
4 PicSOM CN • • •
5 PicSOM GN • • •
6 PicSOM CS • • • •
7 PicSOM GS • • • •
8 PicSOM CNF • • •
9 PicSOM CNE • • •
10 PicSOM CAE • • •

A. Parameter and feature selection

The parameters of the detector like the circle radii,
the window lengths, the vote threshold value and the
frame gap lengths were selected using a discrete gradient
descent method. We submitted ten runs, each of them
using slightly different sets of training data in the training
phase. Table I summarizes the training data used in the
runs. The table specifies what portion of the training
videos, which features, and which transitions of the
videos were used to tune the parameters. In some runs
we used all the video data, in some others we omitted
the NASA videos and used only the news videos. We
also tested channel-specific parameter tuning. In those
runs we trained a separate detector for each channel
in the training data, and used them with corresponding
channels in the test data. A detector trained with all the
news data was used for those channels in the test data
that were not represented in the training data.

The feature column of Table I specifies whether a
normal, a reduced, or an extended feature set was used.
The normal set includes the ten abovementioned still
image features calculated without segmentation or zon-
ing. Automatic feature selection and weighting was done
among these by tuning the feature weight parameters.
The reduced feature set contains five features that gained
the highest weights in the corresponding training phase
with all the features. The extended feature set contains
one additional edge feature, Edge Fourier, which was
implemented after the other runs were already done. The
additional feature vector contains the values of the 16x16
Fast Fourier Transformation of the Sobel edge image of
the given frame. The transition column specifies what
portion of the ground truth data was used in the training:
only the cuts, only the gradual transitions, or both.



Fig. 2. Segments of a trajectory at three consecutive time steps. The SOM cells marked with dark gray color represent trajectory points
belonging to the set of preceding frames, and light gray cells represent the following frames. The trajectory is illustrated with a dotted black
line, and the circles represent the area spanned by the preceding and following frame sets. The areas do not overlap in the two leftmost
figures, but overlap at the third figure. This is interpreted as a one frame gradual transition.
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Fig. 3. The F1 values depicting the shot boundary detector
performance: total performance (black), cut detection (dark gray),
gradual detection (light gray), and F1 calculated from frame precision
and frame recall (white).

B. Results

Figure 3 shows the F1 values calculated from the shot
boundary detection results for each run. The gradual-
optimized detectors 2, 5 and 7 seem to detect gradual
transitions better than the cut-optimized detectors, but
they seem to detect the cuts fairly well too. The gradual-
optimized detectors typically have higher recall and
lower precision values than the cut-optimized, since the
detectors need to be more sensitive in order to detect the
gradual transitions.

Omitting the NASA videos somewhat deteriorates the
cut-optimized performance, but slightly improves the F1
values of the gradual-optimized detector, as can be seen
by comparing detectors 1 and 2 to detectors 4 and 5
respectively. There are lots of slow gradual transitions in
the NASA videos which are usually not found in news

videos, and this might make the detector too sensitive.
The reduction of cut-detection performance can probably
be explained as overlearning. The low performance val-
ues of the channel-specific gradual-optimized classifier
7 is probably also caused by overlearning because there
was not much training data for the channels. The cut-
optimized channel-specific detector 6 detects gradual
transitions slightly better than detector 4 trained with
news data, but this is probably just a coincidence, since
the gradual transitions were not used in training. Detector
1 trained with all the videos outperforms both of them.

Run number 3 seems to have the best F1 score
for total and cut detection performance. The gradual
transition detection performance is also comparable with
the efficiency of the gradual-optimized detectors. This
is the only run in which both the gradual and cut
ground truth transitions were used in training, and thus
this run had the largest total amount of training data.
Surprisingly the cut detection performance improves
when the parameter optimizer has to make compromises
between cut and slow transition detection. We can also
see from the results of runs 8, 9 and 10 that reducing
the number of features slightly improves the overall
performance, while including the extra feature decreases
the performance. The number of parameters is increased
as the number of features increase. These results support
further the hypothesis of overlearning when having too
many adjustable parameters compared to the amount of
training data.

IV. HIGH-LEVEL FEATURE EXTRACTION

For the high-level feature extraction task, we used
a similar approach as in our TRECVID 2005 submis-
sion [1]. The method is based on modeling probability
densities of the concepts using kernel-based estimation
of discrete class densities over the SOM grids. All 39
LSCOM-Lite [10] concepts are detected using the same



TABLE II
AN OVERVIEW OF THE RUNS IN THE HIGH-LEVEL FEATURE

EXTRACTION TASK.

# run id image video nonst. stem cc aux.
F1 not submitted •
F2 not submitted •
F3 A SOM F3 6 • •
F4 A SOM F4 5 • • •
F5 A SOM F5 4 • • •
F6 A SOM F6 3 • • • •
F7 B PicSOM F7 2 • • •
F8 not submitted • • • • •
F9 B PicSOM F9 1 • • • •

procedure based on the concept-wise ground-truth anno-
tations. The method has proven to be readily scalable
to large-scale concept ontologies, and this enabled us to
model the concepts in the full LSCOM [2], [11] ontology
in a similar manner and perform experiments in which
we added auxiliary LSCOM concepts to augment the
submitted 39 concept detectors.

We designed a set of nine high-level feature extraction
experiments, and submitted a total of allowed six runs
from them. The non-submitted runs (F1, F2, and F8) do
not have run identifiers given by NIST so in the follow-
ing discussion we refer to the performed runs using their
corresponding run numbers (F1–F9). Table II gives an
overview of the runs. The columns in Table II, listing the
different information sources, refer to image and video
features, non-stemmed and stemmed ASR/MT output,
closed caption data, and auxiliary LSCOM concepts.
Our sole submission to the high-level feature extraction
task in TRECVID 2005 corresponds mostly to run F5,
although we now had more visual features available.

In the first three runs, we establish a baseline of using
only visual descriptors with only still-image features
(run F1), only video features (run F2) and both of
these modalities (run F3). For each concept, the subset
of features actually used are selected as described in
Section IV-A below. The next three runs explore the
effect of different textual features along with the visual
features. In these runs, the ASR/MT text features are
included either as non-stemmed (run F4) or stemmed
(run F5). In run F6, we combine the closed caption data
with the non-stemmed ASR/MT text features.

In the last three runs, we include a selected set
of auxiliary concepts for each concept detector. This
technique is described in Section IV-B in more detail.
In run F7, we compare the inclusion of the auxiliary
concepts to the visual features baseline (run F3). Runs F8
and F9 incorporate also the text features (non-stemmed

ASR/MT) with and without closed caption data, respec-
tively.

A. Feature selection

Similarly as in last year’s experiments, we selected
the set of used features for each concept detector sepa-
rately using a greedy feature selection scheme [1]. For
each concept, we begin with an empty set of features
and keep adding the best-scoring feature as long as it
improves the overall result. The optimization criterion
was again the average precision at 2000 returned items
with two-fold cross validation on the development set.
As candidate features, we used all the visual features
listed in Sections II-A and II-B, with the exception of
runs F1 and F2 in which the feature selection is restricted
to still-image and video features, respectively.

B. Auxiliary concepts

As part of our experiments this year, we examined
the utilization of positive and negative auxiliary con-
cepts. The conventional approach to automatic concept
detection has been to train a detector with positive and
negative examples of that concept and to do this inde-
pendently of the other concepts. By contrast, in these ex-
periments we include additional auxiliary concepts from
the full LSCOM ontology to the required 39 LSCOM-
Lite concept detectors, based on visual similarities and
co-occurrence inter-concept relations.

The current version 1.0 of LSCOM defines 856
concepts, of which 449 have been used to annotate
the TRECVID 2005 development set in a collaborative
annotation process. Of these 449 concepts, 430 are
marked relevant to at least one shot in the training
data. However, to ensure enough training data for cross-
validation, we used here only a subset of the annotated
LSCOM concepts for which the proportion of relevant
shots exceeded 0.001 on the shot level. This requirement
reduced the number of concept models to a total of 294.
The visual feature selection process described in the
previous section was carried out also for the LSCOM
concept models. None of the text features were used, so
the LSCOM concept models correspond to the submitted
concept models in the run F3.

It is clearly impractical to test every concept in a
large-scale ontology as a candidate auxiliary concept in
both positive and negative senses. Therefore, we used the
following heuristic to select the candidate concepts. In
practice, there are few if any concepts that co-occur fre-
quently in the same shot, but are visually very different,
due to the use of non-localized annotations and global



features. Still, when such concepts exists, they may
be considered potentially helpful for building concept
detectors as they might reveal such shots relevant to a
concept that would be otherwise easily neglected. The
opposite holds for concepts useful as negative auxiliaries:
a visually similar but seldom co-occurring concept is
likely to produce false positives.

Using these criteria, we picked out five positive and
five negative LSCOM candidate concepts for each of
the 39 concepts detectors. In addition, we added the
concept News Studio as the sixth negative candidate for
all detectors. We then checked the candidate concepts
individually to see whether their inclusion improved
the detection results, using cross-validation with the
development set, and rejected those that failed to show
improvement in performance. Typically this process re-
sulted in 1–4 auxiliary concepts per detector, the majority
of which were negative. All the resulting positive and
negative concepts are listed in Table III.

C. Results

Instead of the standard average precision (AP) score,
inferred average precision (InfAP) [12] was used in to
evaluate this year’s high-level feature extraction submis-
sions. InfAP enables the manual judgment of only a
sample of the submission pool. To generate this year’s
ground truth, a sample of 50 % of the pooled submissions
for 20 of the 39 concepts were judged.

Figure 4a shows the mean InfAP values as an overview
of our runs in the high-level feature extraction task. The
highest mean InfAP score of our submitted runs was
0.0797 obtained with run 9, compared to the median of
0.0704 and best run of 0.192 over all submissions. Of
our total of nine runs, the unsubmitted run 8 performed
slightly better, obtaining a mean InfAP of 0.0825. The
concept-wise results are illustrated in Figure 4b, which
shows the best InfAP value among our submitted runs
compared to the median and maximum values over all
submissions. For each concept, the run which yielded
the best InfAP value within our submitted runs is also
shown.

As can be observed in the runs F1–F3 of Figure 4a,
the combined use of image and video features results
in better performance than with either of these modal-
ities separately. This was expected based on the cross-
validation experiments with the development set, so both
modalities were utilized in all of the succeeding runs.

From the runs F4–F6, it can be seen that incorporating
the text features shows an observable improvement in
the mean InfAP values. Between the non-stemmed and

stemmed ASR/MT features, and with and without the
closed caption data, the differences are however minimal.

The effect of the auxiliary concepts is shown in the
runs F7–F9 of Figure 4a, and in more detail in Figure 5.
In the latter figure, the two submitted runs using the
auxiliary concepts are compared concept-wise to corre-
sponding runs without them, i.e. the shown comparisons
are between runs F3 vs. F7 and run F4 vs. F9. Overall,
we can observe a slight general improvement when
utilizing the auxiliary concepts.
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Fig. 5. A comparison of high-level feature extraction runs with
(gray) and without (white) the auxiliary concepts. For each concept,
the four bars correspond to InfAP values of runs F3, F7, F4, and F9.

V. SEARCH EXPERIMENTS

For the search task, we submitted five automatic runs
and one interactive run. The runs are summarized in
Table IV. The retrieval technique is similar to the one
used in our TRECVID 2005 submission [1]. The general
idea is to combine SOM-based visual features with
inverse-file text features and both positive and negative
concept models.

Before the search experiments, features were extracted
from the provided example videos and images for each
search topic. As the example videos were taken from
the development set, key frames could be provided for
most of them by matching the time intervals with those
of the development set key frames. If no key frames
were found, sufficiently “typical” frames were extracted
directly from the videos themselves. After feature ex-
traction, the best-matching map unit for each example
object was located on every SOM of the corresponding
modality in use and the objects were mapped to them.

A set of nine visual features (image and video) was
gathered based on the feature-wise performance in the
feature selection process of the high-level feature extrac-
tion task (see Section IV-A). Five video features (Color



TABLE III
THE POSITIVE AND NEGATIVE AUXILIARY CONCEPTS USED IN THE HIGH-LEVEL FEATURE EXTRACTION TASK.

LSCOM-lite concept Positive LSCOM concepts Negative LSCOM concepts
1: sports - Body Parts, Commercial Advertisement
2: entertainment Water Tower, Amusement Park Windows
3: weather - Trees, Sky, Vegetation, Overlaid Text
4: court - Microphones
5: office - News Studio
6: meeting - Walking Running, Scene Text, News Studio
7: studio - -
8: outdoor Water Tower, Houseboat -
9: building Barn, Water Tower, Clocks News Studio
10: desert Airplane Crash News Studio
11: vegetation Referees Scene Text, News Studio
12: mountain - News Studio
13: road - Group
14: sky - Scene Text, Office, Furniture, News Studio
15: snow Glacier, Ski News Studio
16: urban Water Tower, Empire State -
17: waterscape/waterfront Raft News Studio
18: crowd Handguns -
19: face - Walking, Walking Running
20: person Studio With Anchorperson Body Parts, Car
21: government-leader Jacques Chirac Scene Text, Female Person, News Studio
22: corporate-leader - Scene Text
23: police/security Landing Craft News Studio
24: military Foxhole Windows, News Studio
25: prisoner - News Studio
26: animal - Powerplants, Single Person Male
27: computer/tv-screen - Overlaid Text
28: flag us - News Studio
29: airplane - News Studio
30: car - Standing
31: bus - News Studio
32: truck - News Studio
33: boat/ship - Landscape, Sky
34: walking/running - -
35: people-marching - News Studio
36: explosion/fire Airplane Crash -
37: natural-disaster Avalanche News Studio
38: maps - Scene Text, Female Person
39: charts - Logos Full Scr., Comm. Advertisement, Overlaid Text, Person
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Fig. 4. (a) Mean InfAP values for our runs in the high-level feature extraction task; the submitted runs in gray. (b) The best concept-wise
InfAP values from our submitted (F3-F7, F9) runs (white) compared to median (light gray) and maximum (dark gray) values over all runs.



Moments, Texture Neighborhood, Edge Histogram, Edge
Co-occurrence and Average Color) and four image fea-
tures (MPEG-7 Edge Histogram, MPEG-7 Color Struc-
ture, Texture Neighborhood and Color Moments) were
picked as the default set of visual features in the search
experiments.

Instead of the concept-specific text features used in
the high-level feature extraction task, an inverse file
was created using all the words in the ASR/MT output.
Common stop words and very infrequent ones were
not used. In all search experiments the query topic
description, e.g. “Find shots with one or more emergency
vehicles. . . ”, was used after some pre-processing. The
text query expressions were stemmed using the Porter
stemming algorithm [13], and the SMART stop list [14]
for removal of common terms was applied. Further-
more, based on additional information provided with the
ASR/MT output of non-English videos in TRECVID
2005, lists of proper names of persons, locations and
organization could be created. This was useful for fixing
misspelled names in the text query and also utilized in
the retrieval process. The query terms were weighted
using inverse document frequency.

A. Automatic search and concept matching

Table IV gives an overview of the experiments per-
formed in the search task. The run numbered F1 con-
stitutes the required baseline run using only the query
texts and ASR/MT output. Run F2 uses only the default
set of nine visual features, while F3 uses these com-
bined with the textual inverted file. The run F4 uses
the visual and textual features combined with concept
matching based on the query text, as introduced in our
experiments last year [1]. F5 was a combination of the
above approaches, using either only textual search (as
in F1) or only visual features combined with concept
matching. The criterion was based on a division between
“generic” and “specific” topics, the latter being topics
with descriptions containing proper names. The specific
topics were retrieved using a purely text-based approach,
while the visual features and concept matching were used
for the generic topics.

This year the concept matching was based on a larger
set of LSCOM concepts than in 2005 (see Section IV-
B). The concept names in LSCOM are descriptive,
for example Ship, and with some pre-processing these
could be passed to the WordNet [3] returning a set of
synonyms. For example Ship would get the following
get of discriminative words: ship, watercraft, vessel. If
such words were present in a query description, the

corresponding class models would be added as positive
concepts. The presence of negative words, like a preced-
ing “not” would negate the class model. Table V shows
a list of concepts selected for the different search topics
in the automatic search. Negative concepts are shown in
italics.

Also new for this year was that additional concept
dependent visual features were added based on the
selected class models in experiments F4 and F5. For
each LSCOM class model a set of optimal features
was selected using the same feature selection algorithm
that was used in the high-level feature extraction task
(Section IV-A). Of course many of these features were
already present in the default set of visual features, so
this had an effect only on some queries.

B. Interactive search experiment

The user interface used for interactive search was
a slightly modified version of the basic PicSOM user
interface designed for prototyping relevance feedback
based retrieval of images. As a result, the system was
functional but not by any means optimal for video shot
browsing and retrieval. In this experiment, textual and
visual features were used in combination with string
matched concepts, but without the concept-dependent
features.

The system was set to always return 20 best-scoring
shots. On each round, the query continues as the user
assesses the returned shots and marks the ones that she
considers relevant. The remaining ones are regarded as
non-relevant. All previously found relevant objects are
shown in the lower part of the user interface. This makes
it possible for the user to remove objects from the set of
relevant objects at a later stage. The user interface also
supports returning to previous query rounds or back to
the initial screen, where it is possible to change parame-
ters and restart the search. When the user is finished the
final 1000 best-scoring video shots are stored.

The interactive experiment was performed by seven
researchers of our laboratory, five of which are not
involved in our research group. They did not have any
direct contact with the TRECVID 2006 test data prior to
the experiment. The search sessions were limited to 15
minutes.

C. Results

The MAP scores for all our search runs are listed in
Table IV. For comparison, the median and maximum
values of MAP was calculated from all TRECVID
participants’ runs of the same type, i.e. with the same



TABLE IV
AN OVERVIEW OF SEARCH TASK RUNS. FEATURES MARKED WITH “S” ARE USED FOR “SPECIFIC TOPICS”, “G” FOR “GENERAL TOPICS”.

# run id textual visual conc.dep. concepts MAP median max
F1 F A 1 OM-f1 6 • 0.0152 0.0349 0.0450
F2 F A 2 OM-f2 5 • 0.0190 0.0243 0.0867
F3 F A 2 OM-f3 4 • • 0.0246 0.0243 0.0867
F4 F B 2 OM-f4 2 • • • • 0.0362 0.0390 0.0753
F5 F B 2 OM-f5 3 S G G • 0.0369 0.0390 0.0753
I1 I B 2 OM-i 1 • • • 0.0510 0.1665 0.3034

TABLE V
LSCOM CONCEPTS SELECTED FOR THE SEARCH TOPICS IN AUTOMATIC SEARCH, CONCEPTS LISTED IN ITALICS ARE NEGATIVE.

Topic LSCOM Concepts
173:emergency vehicles Emergency Vehicles, Ground Vehicles, Police, Vehicle, Explosion Fire, Police

Private Security Personnel
174:tall buildings Building
175:leaving or entering vehicle Ground Vehicles, Vehicle
176:escorting prisoner Guard, Police, Soldiers, Police Private Security Personnel, Prisoner
177:demonstration or protest Daytime Outdoor, Demonstration Or Protest, Building, People Marching
178:Dick Cheney Head Of State, Face, Government Leader, Person
179:Saddam Hussein Face, Person
180:in uniform and in formation Military Personnel
181:George W. Bush George Bush, Head Of State, Walking, Face, Government Leader, Person, Walking

Running
182:soldiers or police Armored Vehicles, Emergency Vehicles, Ground Vehicles, Police, Soldiers, Vehicle,

Weapons, Military Personnel, Police Private Security Personnel
183:water with boats Ship, Boat Ship, Waterscape Waterfront
184:seated at computer Computers, Sitting, Computer Or Television Screens
185:reading newspaper Newspapers
186:natural scene Beach, Lakes, Lawn, Oceans, River, Trees, Animal, Mountain, Sky, Vegetation,

Ground Vehicles, Vehicle, Building, Road
187:helicopters in flight Flying Objects, Helicopters
188:burning with flames Explosion Fire
189:seated group in suits and flag Flags, Group, Sitting, Suits
190:person and books Person
191:adult and child Adult, Child, Person
192:kiss on the cheek Greeting
193:smokestacks or chimneys Smoke, Smoke Stack, Tower
194:Condoleeza Rice Face, Person
195:soccer goalposts Soccer
196:snow Snow

training type (A or B) and condition value (1 or 2). For
the interactive run we have calculated the median and
maximum from all interactive runs regardless of type.

The results of the automatic runs indicate that the
video search performance of the PicSOM system im-
proves by augmenting a text query with visual low-
level features and query-string-based matching of class
models. The most notable improvement comes from the
addition of appropriate concepts. Overall, the results
suffer from the poor performance of the text-based

baseline (run F1), which is well below the median of all
submitted baseline runs. The run F5, which uses textual
features for specific topics and visual features combined
with concepts for generic topics, is the best run overall,
although the difference in MAP values between runs F4
and F5 is quite marginal.

Figure 6 shows the topic-wise results with the runs
for each topic in the same order as in Table IV. The
results for topic 195 are shown in a separate graph as
they are much higher than the others, going off the scale.
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Fig. 6. Topicwise results for the automatic search runs F1 – F5.

The performance generally follows roughly the same
order as with the average results, with some interesting
exceptions.

For example, in topic 196 (“scenes with snow”) the
baseline result is dramatically better. Apparently the
word “snow” was very effective, while the visual features
only made the combined results much worse. One might
imagine that color-based features might be good at
detecting snow-filled scenes, but a visual inspection of
the relevant results shows for example news stories about
snow storms in cities and urban areas with buildings,
emergency vehicles, and other things producing shots
with many different colors. The color features tend to
retrieve uniformly colored shots where the white color
is very dominating, for example white graphics or over-
exposed frames. On the other hand, topic 187 clearly
demonstrates the power of concept matching.

In run F5, the following specific topics were identified:
178, 179, 181, and 194. If we investigate the topic-wise
results we can see that our assumption regarding the
specific topics was correct. In many cases the purely
text-based result is indeed dramatically better than the
visual results, and even in those cases where this is not
true, the text-based results are still comparable.

The results of our interactive search experiment were
below the median of all participants’ results. This was
not unexpected as the user interface was not designed
or optimized for these kinds of experiments. Between
topics, the results were very varying, and the greatest
improvements over the automatic searches could be
found in topics that are very specific, for example 189:
“seated group in suits and flag”.

VI. CONCLUSIONS

This was our second year participating in the
TRECVID evaluations. In 2005, we demonstrated that
our content-based information retrieval system PicSOM
was suitable for digital video retrieval with promis-
ing results in both high-level feature extraction and
search tasks. This year we wanted to try both several
smaller evolutionary improvements together with some
new ideas.

We participated in the shot boundary detection task for
the first time this year, and had to spend a considerable
amount of time to design and implement the detector. We
had limited time and limited annotated shot boundary
data to test the performance of our detector, but our
SOM-based method seemed to work quite well. We
learned a lot about the limitations of our detector from
the evaluation results.

In our experiments we have observed that increas-
ing the number of parallel detectors in the committee
improves the detection precision and recall, if there is
sufficiently training data to avoid overfitting. However,
this also increases the computational load of the algo-
rithm significantly. The complexity might be decreased
by replacing the eleven feature extraction methods with
a lesser number of SBD-optimized extraction methods.
The methods utilized in our detector have been originally
developed for image and video retrieval, and therefore
they might not be optimal in shot boundary detection
task. We should also investigate if some of the freely
adjustable parameters could be fixed to some constant
values to reduce the risk of overlearning.

In the high-level feature extraction and search tasks,
the video objects are in PicSOM split into multiple
modalities (video, audio, key frame images and ASR/MT



text data), and indexed as a hierarchical structure with
several parallel SOMs using relevance propagation be-
tween the multiple modalities. Class models created from
the common annotation of the development data were
already used successfully in 2005.

In the high-level feature extraction task our methodol-
ogy was very similar to the one used in 2005. However,
we now experimented with using auxiliary concepts from
the full LSCOM ontology as positive and negative class
models selected automatically for each high-level feature
detector. This technique improved our extraction results.

In the search task we submitted a set of automatic
runs and one interactive run. In addition to the new class
models based on LSCOM concepts we employed a smart
feature selection algorithm that optimized the concept-
wise feature sets. In most cases adding visual features
and concepts to the baseline textual features significantly
improved the retrieval performance. The overall results
clearly suffered from the poor performance of the text
baseline. Still, as we had already previously observed,
using only textual features can perform better in some
cases. To this end we devised a method for detecting
named entities, or “specific” topics, in the textual search
topic descriptions. Such topics were processed using
only textual features, which improved the search per-
formance.
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