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High-level feature task

O Goal: Build benchmark collection for visual concept detection
methods

O Secondary goals:
" encourage generic (scalable) methods for detector development
" feature-indexing could help search/browsing
O Participants submitted runs for all 39 LSCOM-lite features
O Used results of 2005 collaborative training data annotation
"  Tools from CMU and IBM (new tool)
" 39 features and about 100 annotators
" multiple annotations of each feature for a given shot
O Range of frequencies in the common development data annotation

O NIST evaluated 20 (medium frequency) features from the 39 using
a 50% random sample of the submission pools (Inferred AP)
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HLF is challenging for machine learning

.|
O Small imbalanced training collection
U Large variation in examples

U Noisy Annotations

5 Decisions to be made:
" find suitable representations
" find optimal fusion strategies
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20 LSCOM-lite features evaluated

sports

weather

o w

office

6 meeting

10 desert

12 mountain

17 waterscape/waterfront
22 corporate leader

23 police security

24 military personnel

26
27
28
29
30
32
35
36
38
39

animal

computer tv screen
us flag

airplane

car

truck

people marching
explosion fire
maps

charts

Note: this is a departure from the numbering scheme used at

previous TV’s
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High-level feature evaluation

|
O Each feature assumed to be binary: absent or present for each
master reference shot

U Task: Find shots that contain a certain feature, rank them
according to confidence measure, submit the top 2000

O NIST pooled and judged top results from all submissions

O Evaluated performance effectiveness by calculating the inferred
average precision of each feature result

O Compared runs in terms of mean inferred average precision
across the 20 feature results
"  to be used for comparison between TV2006 HLF runs
"  not comparable with TV2005, TV2004... figures
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Inferred average precision (infAP)

O Just* developed by Emine Yilmaz and Javed A.
Aslam at Northeastern University

U Estimates average precision surprisingly well using
a surprisingly small sample of judgments from the
usual submission pools

O Experiments on TRECVID 2005 feature
submissions confirmed quality of the estimate Iin
terms of actual scores and system ranking

*J.A. Aslam, V. Pavlu and E. Yilmaz, Statistical Method for System Evaluation Using Incomplete Judgments
Proceedings of the 29th ACM SIGIR Conference, Seattle, 2006.
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Inferred average precision (infAP)
Experiments with 2005 data

Pool submitted results down to at least a depth of 200 items
Manually judge pools - forming a base set of judgments (100% judged)
O Create 4 sampled sets of judgments by randomly marking some results
“unjudged”
" 20% unjudged -> 80% sample
"  40% unjudged -> 60% sample
"  60% unjudged -> 40% sample
" 80% unjudged ->20% sample
O Evaluate all systems that submitted results for all features in 2005 using
the base and each of the 4 sampled judgment sets using infAP
O By definition, infAP of a 100% sample of the base judgment set is
identical to average precision (AP).
O Compare measurements of infAP using various sampled judgment sets
to standard AP.
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2005 Mean InfAP scoring approximates MAP scoring very
closely
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O

2005 system rankings change very little when determined
based on infAP versus AP.

Kendall's tau (normalizes pairwise swaps)

" 80% sample 0.9862658
" 60% sample 0.9871663
" 40% sample 0.9700546
" 20% sample 0.951566

Number of significant rank changes (randomization test,
p<0.01) f
Swap Lose Keep Add
80% 0 35 2018 37
60% 0 57 1996 36
40% 0 104 1949 45
20% 0 170 1883 73]
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2006: Inferred average precision (infAP)

O Submissions for each of 20 features were pooled down to
about 120 items (so that each feature pool contained ~ 6500
shots)

" varying pool depth per feature
A 50% random sample of each pool was then judged:
66,769 total judgements (~ 125 hr of video)

Judgement process: one assessor per feature, watched
complete shot while listening to the audio.

O infAP was calculated using the judged and unjudged pool by
trec_eval
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Frequency of hits varies by feature
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Systems can find hits in video from programs not in
the training data

® known

80 ' 68 68

H new program

32

Test hours Pooled Hits
shots
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2006: 30/54 Participants (2005: 22/42, 2004: 12/33 )

Bilkent U. -— FE SE —-
Carnegie Mellon U. -— FE SE —-
City University of Hong Kong (CityUHK) SB FE SE —-
CLIPS-IMAG SB FE SE —-
Columbia U. -- FE SE --
COST292 (www.cost292.o0rqg) SB FE SE RU
Fudan U. -— FE SE —-
FX Palo Alto Laboratory Inc SB FE SE —-
Helsinki U. of Technology SB FE SE —--
IBM T. J. Watson Research Center -— FE SE RU
Imperial College London / Johns Hopkins U. -- FE SE —-
NUS / I2R -— FE SE —-
Institut EURECOM -— FE —— RU
KDDI/Tokushima U./Tokyo U. of Technology SB FE —— ——
K-Space (kspace.gmul.net) -— FE SE —-

TRECVID 2006 14



2006: 30 Participants (continued)

LIP6 - Laboratoire d'Informatique de Paris 6 -— FE —— ——
Mediamill / U. of Amsterdam —-— FE SE —-
Microsoft Research Asia -—— FE —— —-
National Taiwan U. -— FE —— —-
NII/ISM -—— FE —— —
Tokyo Institute of Technology SB FE —— ——
Tsinghua U. SB FE SE RU
U. of Bremen TZI -— FE —— —-
U. of California at Berkeley -— FE —— —
U. of Central Florida -— FE SE —-
U. of Electro-Communications -— FE —— —-
U. of Glasgow / U. of Sheffield -— FE SE —-
U. of Iowa -— FE SE —
U. of Oxford -— FE SE —-
Zhejiang U. SB FE SE —-

HLF keeps attracting more participants, most of them

come back the next year.
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Number of runs of each training type

Tr-Type 2006 2005 2004 2003
A |86 (68.8%) |79 (71.8%) | 45 (54.2%) | 22 (36.7%)
B |32 (25.6%) |24 (21.8%) |27 (32.5%) | 20 (33.3%)
__C Z (56% | 7 (83%) |11 (133%) | 18 (30 Q%)
Total 125 110 83 60
runs

System training type:

A - Only on common dev. collection and the common annotation

B - Only on common dev. collection but not on (just) the common annotation

C - notof type Aor B
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% of true shots by source language for each
feature

100 M Arabic

B Chinese
B English

Feature number
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Category A results (top half)
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Category B results
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Category C results
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Inferred Avg. Precision by feature (all runs)
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Inferred avg. precision by feature (top 10 runs)
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Randomization testing

O Method of testing for significant pairwise
differences between runs

" Developed ¢.1935 by R.A. Fisher as thought
experiment

" Gained new usefulness with advent of computer
iIntensive methods in statistics

" Avoids dependence on (usually untrue) assumptions
that samples are truly random, normally distributed,
have equal variances, etc.

" But makes no claims about populations
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Randomization test procedure

Given observed scores for two systems on the same 20 features, calculate
the mean score for each system and the observed difference of between the
means.

Would like to know if the difference is due to the systems or to chance.

Generate a distribution of differences between the means under the null
hypothesis that the difference is due to chance: for any feature, score from one
system could equally likely have come the other

Calculate within feature pairwise difference & difference in means, once
For ~10,000 iterations or more
For each pair of scores, randomly change the sign of the difference
Sum the differences, calculate new mean, add it to the H® distribution
Count how many differences in H® are equal to or more extreme than the
observed difference

Take [count / total number of generated differences] as probability (p) that the
observed difference in means is due to chance.
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Randomization test procedure

Given observed scores for two systems on the same 20 features, calculate
the mean score for each system and the observed difference of between the
means.

R1: 0.467 0.434 0.013 0.314 0.041 0.188 0.242 ...

R2: 0.367 0.515 0.004 0.236 0.057 0.087 0.054 ...

(R1-R2)/20: SuM(+0.1 -0.081 +0.009 +0.078 -0.016 +0.101 +0.188 ...)/20
= 0.033

Generate a distribution of differences between the means under the null
hypothesis that the difference is due to chance: for any feature, score from one
system could equally likely have come the other

1. suM(-0.1 -0.081 -0.009 +0.078 -0.016 +0.101 +0.188 ...)/20 = -0.008
2. SuM(+0.1 -0.081 +0.009 -0.078 +0.016 +0.101 -0.188 ...)/20 = 0.019
3. SuM(-0.1 -0.081 -0.009 +0.078 -0.016 -0.101 +0.188 ...)/20 = 0.046
5. SUM(+0.1 +0.081 +0.009 -0.078 +0.016 +0.101 +0.188 ...)/20 = -0.224

3145 of 95344 generated differences >= 0.033
Probability observed difference is due to chance (p) = 0.03299
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Significant differences among top 10 A-category
runs (using randomization test, p < 0.05)

e
Run name (mean infAP)

A tsinghua_6
* A_tsinghua_6 (0192) s A IBM.UB 4
= A_IBM.MBWN_5 (0.177) ¥ A CMU.Return_of _The_Jedi_6
_ ¥ A CMU.A _New_ Hope 4
- A_IBM.MRF_2 (0.176) ¥ A CMU.The_Empire_Strikes_back_5
= A_IBM.MAAR_3 (0.170) 3 A CMU.Attack_of The Clones 2
= A_IBM.MBW_1 (0.169) A_IBM.MRF_2
A
A _CMU.Return... 6 (0.159) A_CMU.Attack of The Clones 2
¥ A IBM.UB 4
- A_IBM.UB_4 (0.155) A IBM.MBWN 5
- A CMU.The_Empire... 5 (0.153) 3 A CMU.Attack of The Clones 2
_ A_CMU.A_New_Hope..._4 (0.148) A_IBM.UB_4
A IBM.MAAR_3
- A_CMU.Attack of the..._2 (0.146) s A IBM.UB 4
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Comparison with TV2005

O Some features were also
evaluated last year

O Comparison yields mixed bag:

u 2 features decreased m Tv2005 top | 0,6

2 features inceased m TV2006 top 0.5
)

[ |

H TV2005 med
" 1 feature stable 5 TV2006 med () 4
- most of these features have ’

just 100-200 true hits in the 0,3
sampled pool 0.2
5 _ . . 0,1
Caveat: comparison is just o
indicative... T SN
=  compare m.a.p and InfApp & & & &
" put test set drawn from similar & &
dataset as TV2005 &
"  Did anyone re-run last year’s
system?

TRECVID 2006
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infAP vs. # true shots in test data

0
0 200
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General observations (1)

O Participation is still
increasing

O Maintained focus on cat A

O Most groups built a generic
feature detector

O Top scores come from the
usual suspects plus a few
new groups

TRECVID 2006
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General observations (2)

O Many interesting new techniques are tried

H Somle consolidation: SVM is the dominant classifier with robust
results

O Good systems combine representations at multiple granularities
=  Salient point representation gaining more ground

O Good systems combine different feature types (c,t,e/s,a,T,f)

O 8/30 teams look at more than just the shot keyframe

0 Many interesting multimodal/concept fusion experiments, room
for more exploration here

O multi-concept fusion still of limited use (due to small lexicon?)
" CMU: not many concepts support each other
"  Columbia: 3 out of 4 predicted concepts have 30% increase

O Can concept fusion learn from IR co-occurrence techniques?
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Overview of approaches across sites

U feature types

" c: color, t: texture, s:shape, e:edges, a:acoustic, f:face,
T: text

granularity (local, region, global)
classifier techniques

fusion

generic vs. feature specific

focus of site experimented marked in blue,
speaking slots in yellow

O O O 0O 0O
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run tag best be repr. feat temporal multiconcept | eneric
Cat. run st granularity ures analysis classifier multimodal fusion fusion ?
0,19 | global,grid, camera motion, weight-select, tackedSVM,
A tsinghua 2 | segm. point c,t,T,f | motion act. svm rankboost, stackedSVM | rules
U1
A IBM.MAAR 70 ? ? svm,? ? ?
TTOttiaisTr
CMU.A_New_ 0,1 | rid (5x5) logistic regression, RF (chi2
A Hope 48 | +points 1T svm early, late, borda selection)
SIFT oosting CRF
A COL1 0,142 | points/grid c,t,T MD vm average fusion (PMI selection)
U1
A ucb_1best 22 points e, T shot context svm svm svm
0,11
A UCF.CE.PROB 9 c.e svm average/product/KDE
0,1 global, svm/ log
B MM.bottom 17 | grid, point reg /LD early/ late fusion svm
ge
0,1 cte n+spe
A KSpace-base 10 grid T camera motion svm bayesian (DS) cific
A CityUHK1 0,106 | points+grid c,t EMD svm average fusion
SVM, KDE,
manifold
MSRA_TREC 0,0 global, c.t,s,f, ranking, t- weighted fusion, also
A VID 86 | grid T graph looked at unlabeled data
A NTU 0,073
motion act. handpicked
0,0 average c,t, for negative
B PicSOM_F7 64 grid c,t,T | shot SOM linear combination concepts
B FXPAL-06Beta 0,059 MM MM svm DRF / chi2
points
(sparse/dens
B XVGG_A ,053 | e) c,e,f SVM Borda Count



be repr. feature temporal multiconce gen
at. run tag best run st granularity s analysis classifier multimodal fusion pt fusion eric?
frame
clustering,
i2Rnus 0,040 | grid c,t, T bigrams SVM,LDF,GMM cond prob
overlapping loc. bin
A NIL_ISM_R1 0,033 | grid pat. SVM
clips.local-reuters-
B kernel-prod 0,031 | local+global ct,T SVM
0,0
TokyoTech 30
ultimodal subspace
A ZJU 0,029 | global cteT,a VM correlation propag
0,0
kddi.SiriusCy3 26 | grid + points s Haar/KNN not all
A ilkent1 ,021 | rid teT NN
0,0 c,T,ef, every weighted average, cond +sp
B TZI_Avg 21 a 20th frame SVM prob. relax. labelling | prob ecific
0,0
UEC_Common 06
Glasgow.ohetrield 0,0
01 05 T tfidf
0,0 fuzzy decision
A LIP6.FuzzyDT 04 grid p,Cc trees
0,0
A URO01-SVM 02 points c,t SVM NN
0,0
FD SCM_BN 01 points c.t GMM/SVM cond. P
likelihood ratio
icl.jhu_4 ,001 | rid LT (HMM) source adaptation
lowa06FEO1 ,001
COST292R1 0,000 | points/grid/LSA ct/T NN/Bayes ot all




Issues

.|
O How to make the most of a fixed limited number of
assessor time
" Sampling method
" Equal pool size for each feature?

U Repetition of advertisement clips was less of an issue as in
TV2005

Systematic study of interaction between search and HLF

How to proceed after 5 years of HLF?

" massive scaling requires massive amounts of annotation and
assessment time

TRECVID 2006 36



Discussion input

.|
U How to make the most of a fixed limited number of
assessor time
" Sampling method refinement
O top->sample->unique vs. top->unique-sample?
O mark ignore vs. mark non relevant
" map vs. precision@N
" Equal pool size for each feature?
O How to proceed after 5 years of HLF?

" massive scaling requires massive amounts of
annotation and possibly assessment time

" Explore social tagging, annotation as a game?

TRECVID 2006

37



