TRECVID-2006 High-Level Feature task: Overview

Wessel Kraaij

TNO

&

Paul Over

NIST

Outline

- Task summary
- Evaluation details
 - Inferred Average precision vs. mean average precision
 - Participants
- Evaluation results
 - Pool analysis
 - Results per category
 - Results per feature
 - Significance tests category A
 - comparison with TV2005
- Global Observations
- Issues

High-level feature task

- Goal: Build benchmark collection for visual concept detection methods
- Secondary goals:
 - encourage generic (scalable) methods for detector development
 - feature-indexing could help search/browsing
- Participants submitted runs for all 39 LSCOM-lite features
- Used results of 2005 collaborative training data annotation
 - Tools from CMU and IBM (new tool)
 - 39 features and about 100 annotators
 - multiple annotations of each feature for a given shot
- Range of frequencies in the common development data annotation
- NIST evaluated 20 (medium frequency) features from the 39 using a 50% random sample of the submission pools (Inferred AP)

HLF is challenging for machine learning

- Small imbalanced training collection
- Large variation in examples
- Noisy Annotations

- Decisions to be made:
 - find suitable representations
 - find optimal fusion strategies

20 LSCOM-lite features evaluated

```
26 animal
 1 sports
                              27 computer tv screen
 3 weather
                              28 us flag
 5 office
                              29 airplane
 6 meeting
                              30 car
10 desert
                              32 truck
12 mountain
                              35 people marching
17 waterscape/waterfront
                              36 explosion fire
22 corporate leader
                              38 maps
23 police security
                              39 charts
24 military personnel
```

Note: this is a departure from the numbering scheme used at previous TV's

High-level feature evaluation

- Each feature assumed to be binary: absent or present for each master reference shot
- Task: Find shots that contain a certain feature, rank them according to confidence measure, submit the top 2000
- NIST pooled and judged top results from all submissions
- Evaluated performance effectiveness by calculating the *inferred* average precision of each feature result
- Compared runs in terms of mean inferred average precision across the 20 feature results
 - to be used for comparison between TV2006 HLF runs
 - not comparable with TV2005, TV2004... figures

Inferred average precision (infAP)

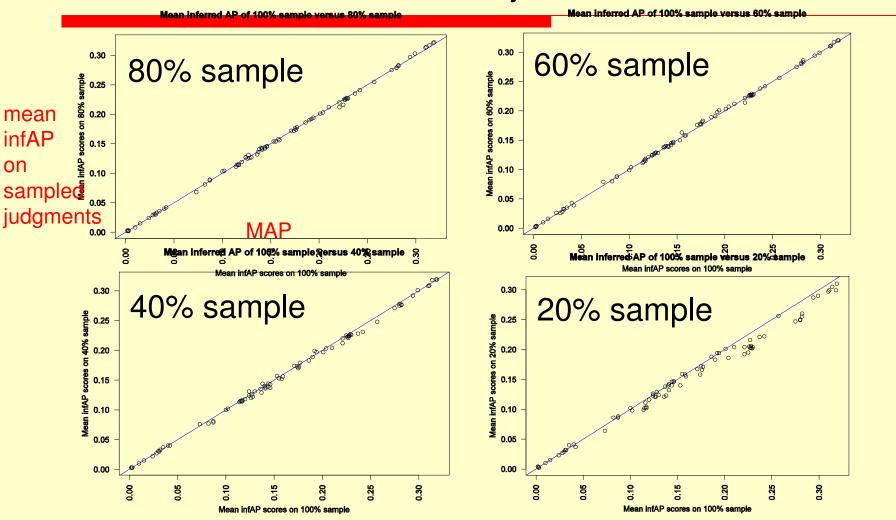
- Just* developed by Emine Yilmaz and Javed A.
 Aslam at Northeastern University
- Estimates average precision surprisingly well using a surprisingly small sample of judgments from the usual submission pools
- Experiments on TRECVID 2005 feature submissions confirmed quality of the estimate in terms of actual scores and system ranking

^{*} J.A. Aslam, V. Pavlu and E. Yilmaz, *Statistical Method for System Evaluation Using Incomplete Judgments* Proceedings of the 29th ACM SIGIR Conference, Seattle, 2006.

Inferred average precision (infAP) Experiments with 2005 data

- Pool submitted results down to at least a depth of 200 items
- Manually judge pools forming a base set of judgments (100% judged)
- Create 4 sampled sets of judgments by randomly marking some results "unjudged"
 - 20% unjudged -> 80% sample
 - 40% unjudged -> 60% sample
 - 60% unjudged -> 40% sample
 - 80% unjudged -> 20% sample
- Evaluate all systems that submitted results for all features in 2005 using the base and each of the 4 sampled judgment sets using infAP
- By definition, infAP of a 100% sample of the base judgment set is identical to average precision (AP).
- Compare measurements of infAP using various sampled judgment sets to standard AP.

2005 Mean InfAP scoring approximates MAP scoring very closely



2005 system rankings change very little when determined based on infAP versus AP.

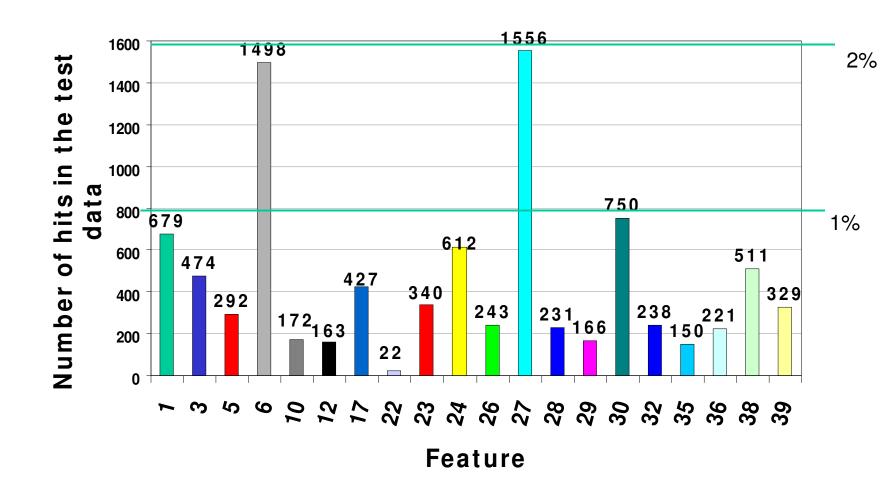
- Kendall's tau (normalizes pairwise swaps)
 - 80% sample 0.9862658
 - 60% sample 0.9871663
 - 40% sample 0.9700546
 - 20% sample 0.951566
- Number of significant rank changes (randomization test, p<0.01)

	Swap	Lose	Keep	Add
80%	0	35	2018	37
60%	0	57	1996	36
40%	0	104	1949	45
20%	0	170	1883	73

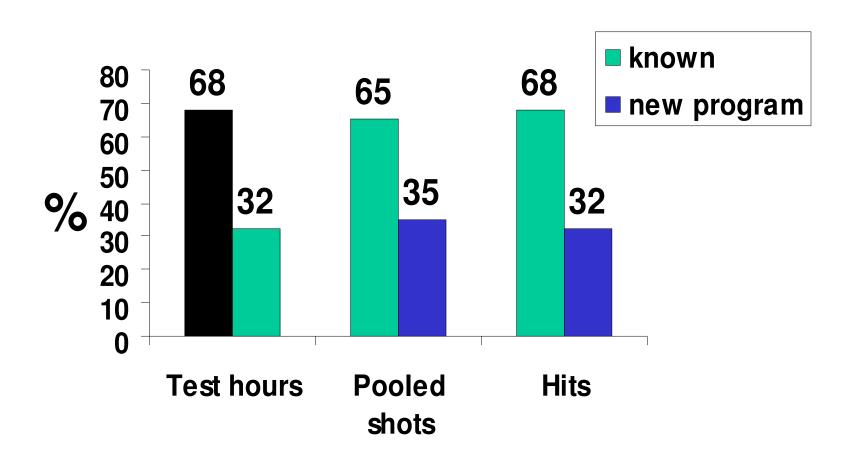
2006: Inferred average precision (infAP)

- Submissions for each of 20 features were pooled down to about 120 items (so that each feature pool contained ~ 6500 shots)
 - varying pool depth per feature
- A 50% random sample of each pool was then judged:
- 66,769 total judgements (~ 125 hr of video)
- Judgement process: one assessor per feature, watched complete shot while listening to the audio.
- infAP was calculated using the judged and unjudged pool by trec_eval

Frequency of hits varies by feature



Systems can find hits in video from programs not in the training data



2006: 30/54 Participants (2005: 22/42, 2004: 12/33)

```
Bilkent U.
                                                    -- FE SE --
Carnegie Mellon U.
                                                    -- FE SE --
City University of Hong Kong (CityUHK)
                                                    SB FE SE --
CLIPS-IMAG
                                                    SB FE SE --
Columbia U.
                                                    -- FE SE --
COST292 (www.cost292.org)
                                                     SB FE SE RU
Fudan U.
                                                    -- FE SE --
                                                    SB FE SE --
FX Palo Alto Laboratory Inc
Helsinki U. of Technology
                                                    SB FE SE --
IBM T. J. Watson Research Center
                                                    -- FE SE RU
Imperial College London / Johns Hopkins U.
                                                    -- FE SE --
NUS / I2R
                                                    -- FE SE --
                                                    -- FE -- RU
Institut EURECOM
KDDI/Tokushima U./Tokyo U. of Technology
                                                    SB FE -- --
K-Space (kspace.gmul.net)
                                                    -- FE SE --
```

TRECVID 2006 14

2006: 30 Participants (continued)

```
LIP6 - Laboratoire d'Informatique de Paris 6
                                                    -- FE -- --
Mediamill / U. of Amsterdam
                                                    -- FE SE --
Microsoft Research Asia
                                                     -- FE -- --
                                                     -- FE -- --
National Taiwan U.
                                                    -- FE -- --
NII/ISM
                                                     SB FE -- --
Tokyo Institute of Technology
Tsinghua U.
                                                    SB FE SE RU
U. of Bremen TZI
                                                    -- FE -- --
U. of California at Berkeley
                                                    -- FE -- --
U. of Central Florida
                                                    -- FE SE --
                                                    -- FE -- --
U. of Electro-Communications
U. of Glasgow / U. of Sheffield
                                                    -- FE SE --
U. of Iowa
                                                    -- FE SE --
                                                    -- FE SE --
U. of Oxford
                                                    SB FE SE --
Zhejiang U.
```

HLF keeps attracting more participants, most of them come back the next year.

TRECVID 2006

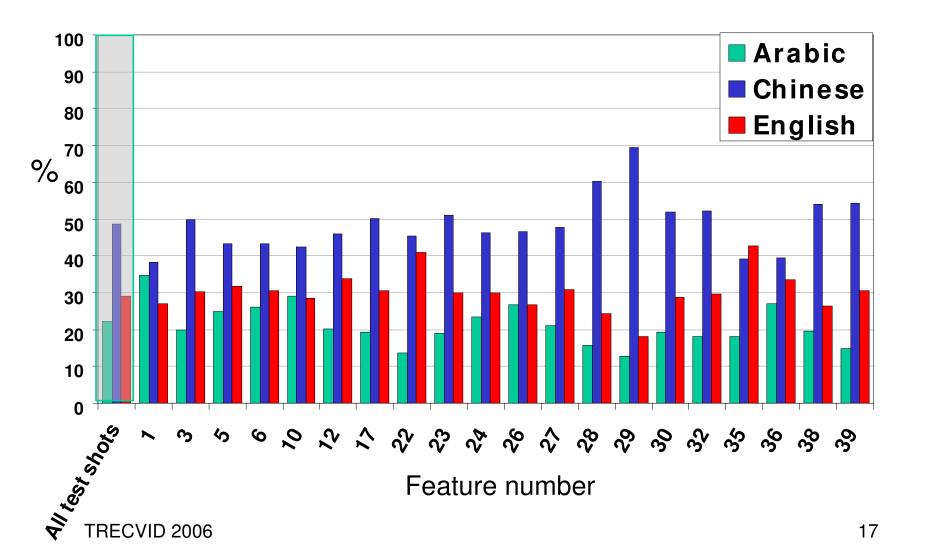
Number of runs of each training type

	I	I	I	I	
Tr-Type	2006	2005	2004	2003	
Α	86 (68.8%)	79 (71.8%)	45 (54.2%)	22 (36.7%)	
В	32 (25.6%)	24 (21.8%)	27 (32.5%)	20 (33.3%)	
C	7 (5.6%	7 (6.3%)	11 (13.3%)	18 (30 ₋ 0%)	
Total	125	110	83	60	
runs					

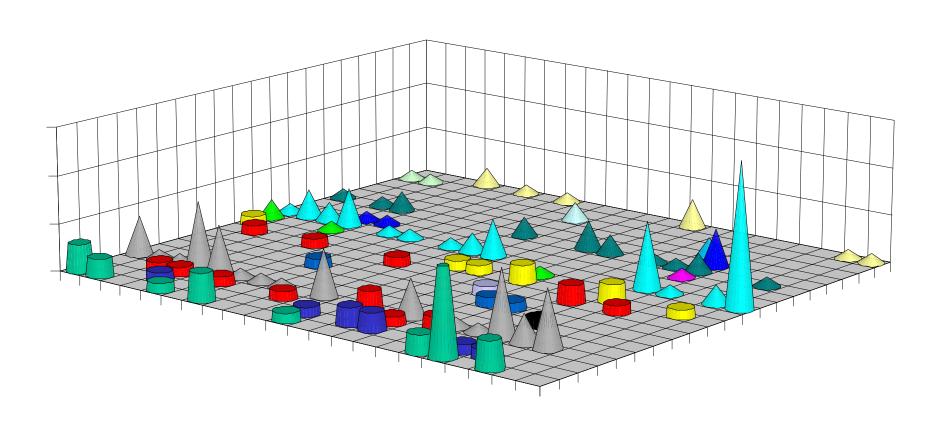
System training type:

- A Only on common dev. collection and the common annotation
- **B** Only on common dev. collection but not on (just) the common annotation
- C not of type A or B

% of true shots by source language for each feature

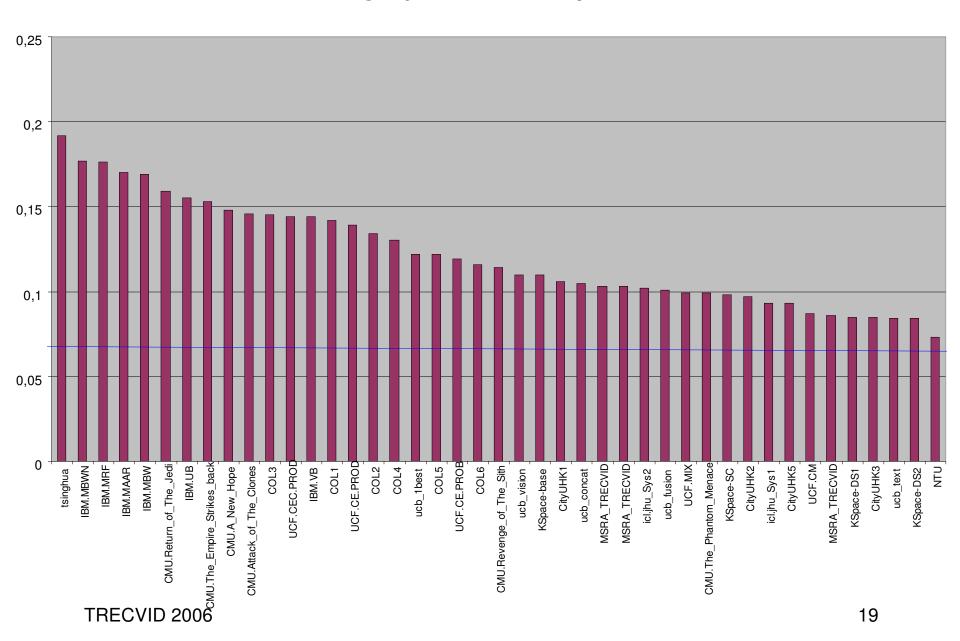


True shots contributed uniquely by team for each feature

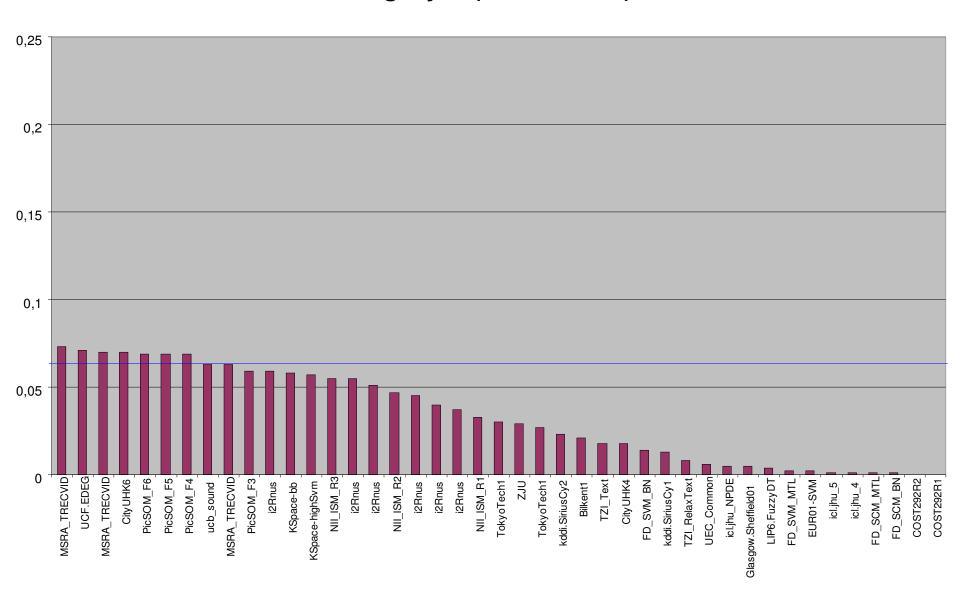


TRECVID 2006 18

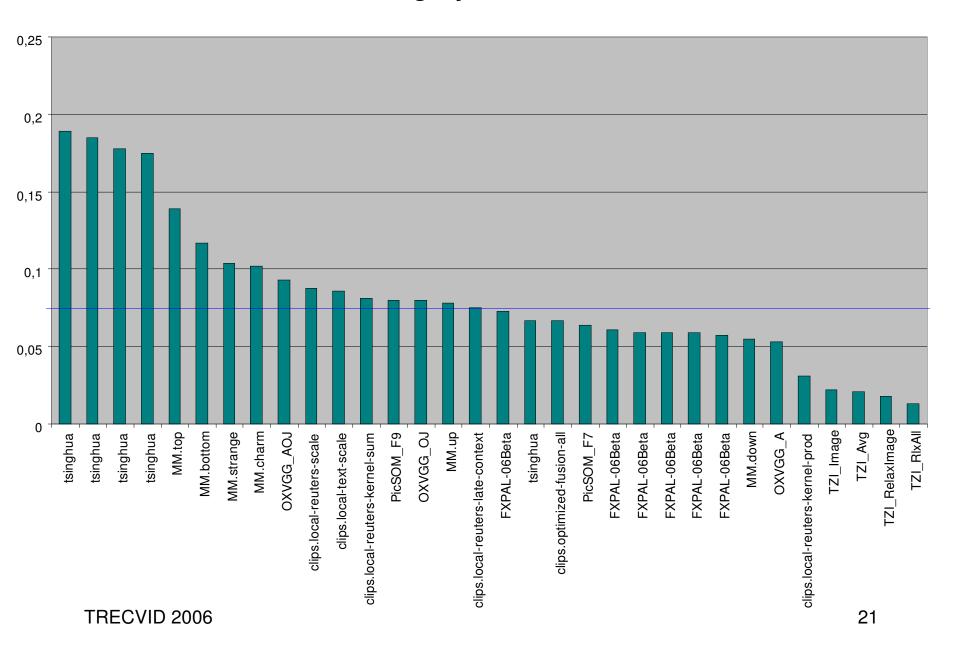
Category A results (top half)



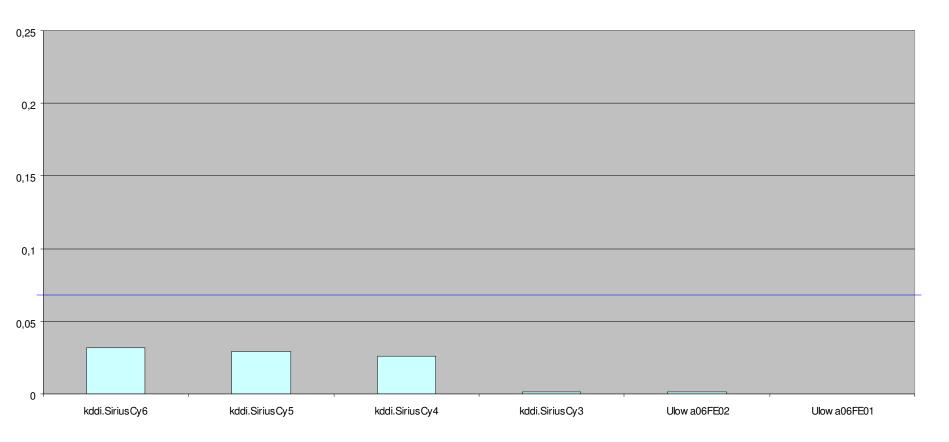
Category A (bottom half)



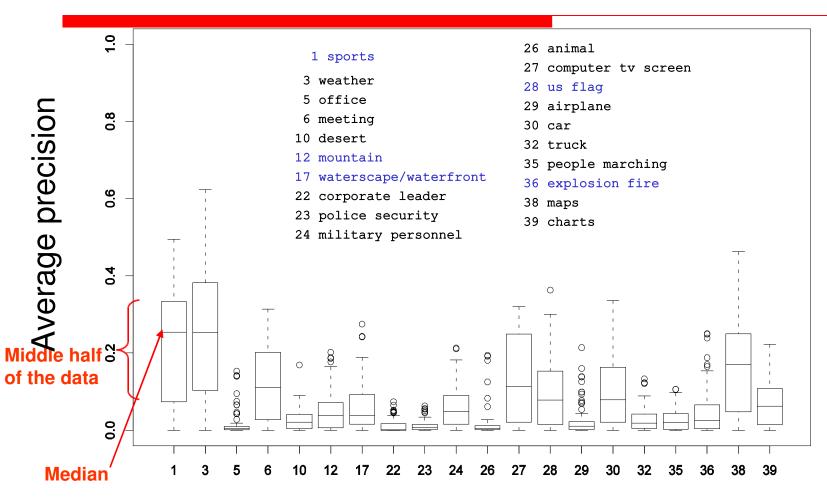
Category B results



Category C results

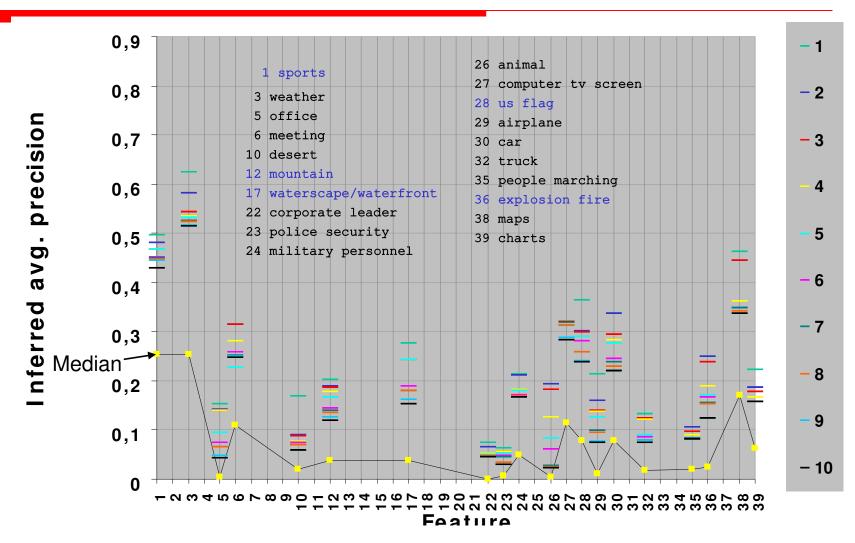


Inferred Avg. Precision by feature (all runs)



Feature number

Inferred avg. precision by feature (top 10 runs)



TRECVID 2006

Which, if any, differences are significant, i.e. not due to chance?

Randomization testing

- Method of testing for significant pairwise differences between runs
 - Developed c.1935 by R.A. Fisher as thought experiment
 - Gained new usefulness with advent of computer intensive methods in statistics
 - Avoids dependence on (usually untrue) assumptions that samples are truly random, normally distributed, have equal variances, etc.
 - But makes no claims about populations

Randomization test procedure

- 1. Given observed scores for two systems on the same 20 features, calculate the mean score for each system and the observed difference of between the means.
- 2. Would like to know if the difference is due to the systems or to chance.
- Generate a distribution of differences between the means under the null hypothesis that the difference is due to chance: for any feature, score from one system could equally likely have come the other
 - · Calculate within feature pairwise difference & difference in means, once
 - For ~10,000 iterations or more
 - For each pair of scores, randomly change the sign of the difference
 - Sum the differences, calculate new mean, add it to the H° distribution
- 4. Count how many differences in H° are equal to or more extreme than the observed difference
- 5. Take [count / total number of generated differences] as probability (p) that the observed difference in means is due to chance.

Randomization test procedure

 Given observed scores for two systems on the same 20 features, calculate the mean score for each system and the observed difference of between the means.

```
R1: 0.467 \ 0.434 \ 0.013 \ 0.314 \ 0.041 \ 0.188 \ 0.242 \dots
R2: 0.367 \ 0.515 \ 0.004 \ 0.236 \ 0.057 \ 0.087 \ 0.054 \dots
(R1-R2)/20: SUM(+0.1 \ -0.081 \ +0.009 \ +0.078 \ -0.016 \ +0.101 \ +0.188 \dots)/20
= 0.033
```

Generate a distribution of differences between the means under the null hypothesis that the difference is due to chance: for any feature, score from one system could equally likely have come the other

```
SUM(-0.1 -0.081 -0.009 +0.078 -0.016 +0.101 +0.188 ...)/20 = -0.008

SUM(+0.1 -0.081 +0.009 -0.078 +0.016 +0.101 -0.188 ...)/20 = 0.019

SUM(-0.1 -0.081 -0.009 +0.078 -0.016 -0.101 +0.188 ...)/20 = 0.046

SUM(+0.1 +0.081 +0.009 -0.078 +0.016 +0.101 +0.188 ...)/20 = -0.224
```

- 3145 of 95344 generated differences >= 0.033
- Probability observed difference is due to chance (p) = 0.03299

Significant differences among top 10 A-category runs (using randomization test, p < 0.05)

Run name (mean infAP)

- * A_tsinghua_6 (0.192)
- = A_IBM.MBWN_5 (0.177)
- **=** A_IBM.MRF_2 (0.176)
- **=** A_IBM.MAAR_3 (0.170)
- **=** A_IBM.MBW_1 (0.169)
- A_CMU.Return..._6 (0.159)
- A_IBM.UB_4 (0.155)
- A_CMU.The_Empire..._5 (0.153)
- A_CMU.A_New_Hope..._4 (0.148)
- A_CMU.Attack of the..._2 (0.146)

A_tsinghua_6

- A_IBM.UB_4
- A CMU.Return of The Jedi 6
 - A CMU.A New Hope 4
- A_CMU.The_Empire_Strikes_back_5
 - A_CMU.Attack_of_The_Clones_2

A IBM.MRF 2

- A_CMU.Attack_of_The_Clones_2
- A IBM.UB 4

A IBM.MBWN 5

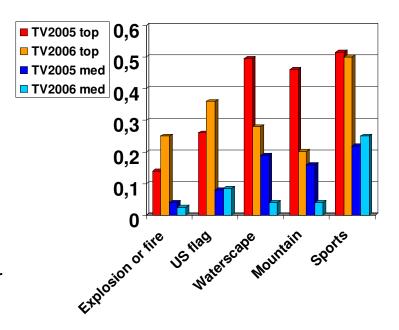
- A_CMU.Attack_of_The_Clones_2
- A_IBM.UB_4

A_IBM.MAAR_3

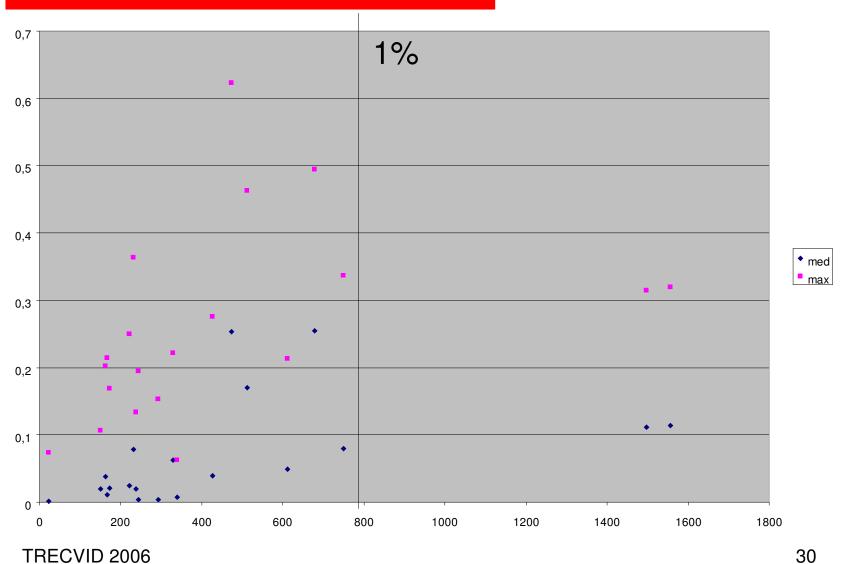
A IBM.UB 4

Comparison with TV2005

- Some features were also evaluated last year
- Comparison yields mixed bag:
 - 2 features decreased
 - 2 features inceased
 - 1 feature stable
 - most of these features have just 100-200 true hits in the sampled pool
- Caveat: comparison is just indicative...
 - compare m.a.p and InfApp
 - but test set drawn from similar dataset as TV2005
 - Did anyone re-run last year's system?



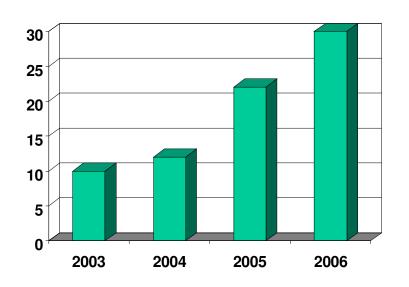
infAP vs. # true shots in test data



General observations (1)

Participation is still increasing

- Maintained focus on cat A
- Most groups built a generic feature detector
- Top scores come from the usual suspects plus a few new groups



General observations (2)

- Many interesting new techniques are tried
- Some consolidation: SVM is the dominant classifier with robust results
- Good systems combine representations at multiple granularities
 - Salient point representation gaining more ground
- □ Good systems combine different feature types (c,t,e/s,a,T,f)
- 8/30 teams look at more than just the shot keyframe
- Many interesting multimodal/concept fusion experiments, room for more exploration here
- multi-concept fusion still of limited use (due to small lexicon?)
 - CMU: not many concepts support each other
 - Columbia: 3 out of 4 predicted concepts have 30% increase
- Can concept fusion learn from IR co-occurrence techniques?

Overview of approaches across sites

- feature types
 - c: color, t: texture, s:shape, e:edges, a:acoustic, f:face,
 T: text
- granularity (local, region, global)
- classifier techniques
- fusion
- generic vs. feature specific
- focus of site experimented marked in blue, speaking slots in yellow

1	1							T	1
Cat.	run tag best run	be st	repr. granularity	feat ures	temporal analysis classifier multimodal fusion		multiconcept fusion	eneric ?	
Α	tsinghua	0,19	global,grid, segm. point	c,t,T,f	camera motion, motion act.	svm	weight-select, rankboost, stackedSVM	tackedSVM, rules	
Α	IBM.MAAR	0,1 70	?	?		svm,?	?	? "	
А	CMU.A_New_ Hope	0,1 48	rid (5x5) +points	,t,T		svm	logistic regression, early, late, borda	multi discr RF (chi2 selection)	
Α	COL1	0,142	SIFT points/grid	c,t,T	MD	vm	average fusion	oosting CRF (PMI selection)	
Α	ucb_1best	0,1 22	points	,e,T	shot context	svm	svm	svm	
Α	UCF.CE.PROB	0,11 9		c,e		svm	average/product/KDE		
В	MM.bottom	0,1 17	global, grid, point			svm/ log reg / LD	early/ late fusion	svm	
А	KSpace-base	0,1 10	grid	c,t,e ,T	camera motion	svm	bayesian (DS)		ge n+spe cific
Α	CityUHK1	0,106	points+grid	c,t	EMD	svm	average fusion		
A	MSRA_TREC VID	0,0 86	global, grid	c,t,s,f, T		SVM, KDE, manifold ranking, t- graph	weighted fusion, also looked at unlabeled data		
Α	NTU	0,073							
В	PicSOM_F7	0,0 64	grid	c,t,T	motion act. average c,t, for shot	SOM	linear combination	handpicked negative concepts	
В	FXPAL-06Beta	0,059	ММ	MM		svm		DRF / chi2	
В	XVGG_A	,053	points (sparse/dens e)	c,e,f		SVM	Borda Count		

c at.	run tag best run	be st	repr. granularity	feature s	temporal analysis	classifier	multimodal fusion	multiconce pt fusion	gen eric?
F	i2Rnus	0,040	grid	c,t,T	frame clustering, bigrams	SVM,LDF,GMM		cond prob	
А	NII_ISM_R1	0,033	overlapping grid	loc. bin. pat.		SVM			
В	clips.local-reuters- kernel-prod	0,031	local+global	c,t,T		SVM			
F	TokyoTech1	0,0 30							
А	ZJU	0,029	global	c,t,e,T,a		VM	ultimodal subspace correlation propag		
(kddi.SiriusCy3	0,0 26	grid + points	S		Haar/KNN			not all
Α	ilkent1	,021	rid	,t,e,T		NN			
В	TZI_Avg	0,0 21		c,T,e,f,	every 20th frame	SVM	weighted average, prob. relax. labelling	cond prob	+sp ecific
F	UEC_Common	0,0 06							
F	Glasgow.Sheffield 01	0,0 05		Т		tfidf			
А	LIP6.FuzzyDT	0,0 04	grid	p,c		fuzzy decision trees			
Α	UR01-SVM	0,0 02	points	c,t		SVM		NN	
F	FD_SCM_BN	0,0 01	points	c,t		GMM/SVM		cond. P	
F	icl.jhu_4	,001	rid	,t,T		likelihood ratio (HMM)	source adaptation		
(lowa06FE01	,001							
F	COST292R1	0,000	points/grid/LSA	c,t / T		NN/Bayes			ot all

Issues

- How to make the most of a fixed limited number of assessor time
 - Sampling method
 - Equal pool size for each feature?
- Repetition of advertisement clips was less of an issue as in TV2005
- Systematic study of interaction between search and HLF
- How to proceed after 5 years of HLF?
 - massive scaling requires massive amounts of annotation and assessment time

Discussion input

- How to make the most of a fixed limited number of assessor time
 - Sampling method refinement
 - top->sample->unique vs. top->unique-sample?
 - mark ignore vs. mark non relevant
 - map vs. precision@N
 - Equal pool size for each feature?
- How to proceed after 5 years of HLF?
 - massive scaling requires massive amounts of annotation and possibly assessment time
 - Explore social tagging, annotation as a game?