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Abstract

In this paper we describe our TRECVID 2007 experiments.
The MediaMill team participated in two tasks: concept de-
tection and search. For concept detection we extract region-
based image features, on grid, keypoint, and segmentation
level, which we combine with various supervised learners. In
addition, we explore the utility of temporal image features.
A late fusion approach of all region-based analysis methods
using geometric mean was our most successful run. What is
more, using MediaMill Challenge and LSCOM annotations,
our visual-only approach generalizes to a set of 572 concept
detectors. To handle such a large thesaurus in retrieval,
an engine is developed which automatically selects a set of
relevant concept detectors based on text matching, ontology
querying, and visual concept likelihood. The suggestion en-
gine is evaluated as part of the automatic search task and
forms the entry point for our interactive search experiments.
For this task we experiment with two browsers for interac-
tive exploration: the well-known CrossBrowser and the novel
ForkBrowser. It was found that, while retrieval performance
varies substantially per topic, the ForkBrowser is able to
produce the same overall results as the CrossBrowser. How-
ever, the ForkBrowser obtains top-performance for most
topics with less user interaction. Indicating the potential
of this browser for interactive search. Similar to previous
years our best interactive search runs yield high overall per-
formance, ranking 3rd and 4th.

1 Introduction

Most commercial video search engines such as Google,
Blinkx, and YouTube provide access to their repositories
based on text, as this is still the easiest way for a user to
describe an information need. The indices of these search
engines are based on the filename, surrounding text, so-
cial tagging, or a transcript. This results in disappointing
performance when the visual content is not reflected in the
associated text. In addition, when the videos originate from
non-English speaking countries, such as China, Lebanon, or
the Netherlands, querying the content becomes even harder
as automatic speech recognition results are so much poorer.
Additional visual analysis yields more robustness. Thus, in

video retrieval a recent trend is to learn a lexicon of seman-
tic concepts from multimedia examples and to employ these
as entry points in querying the collection.

Last year we presented the MediaMill 2006 semantic
video search engine [28] using a 491 concept lexicon. For
our current system we extended it to a thesaurus of 572
concepts. The items vary from pure format like a detected
split screen, or a style like an interview, or an object like a
telephone, or an event like a press conference. Any one of
those brings an understanding of the current content. The
elements in such a thesaurus offer users a semantic entry to
video by allowing them to query on presence or absence of
content elements. For a user, however, selecting the right
topic from the large thesaurus is difficult. We therefore de-
veloped a suggestion engine that analyzes the textual topic
given by the user, to automatically derive the most relevant
concept detectors for querying the video archive. In ad-
dition, we developed novel browsers that present retrieval
results using advanced visualizations. Taken together, the
MediaMill 2007 semantic video search engine provides users
with semantic access to video archives.

The remainder of the paper is organized as follows. We
first define our semantic video indexing architecture in Sec-
tion 2, emphasizing spatio-temporal visual analysis. Then
we highlight our semantic video retrieval engine in Section 3,
which includes novel methods for concept suggestion, visual
querying, and various video browsers.

2 Semantic Video Indexing

Our generic semantic video indexing architecture is based
on the semantic pathfinder [28, 29]. It is founded on the
observation that produced video is the result of an author-
ing process. The semantic pathfinder selects the best path
through content analysis, style analysis, and context analy-
sis. This year we again use a semantic pathfinder that relies
mainly on (visual) content analysis. In this section we will
highlight which components and experiments of last year
have been replaced by more elaborate analysis, learning,
and combination schemes.



2.1 Supervised Learners

We perceive concept detection in video as a pattern recog-
nition problem. Given pattern ~x, part of a shot i, the aim
is to obtain a probability measure, which indicates whether
semantic concept ωj is present in shot i. Here shot seg-
mentation is based on [23]. Similar to previous years, we
use the Support Vector Machine (SVM) framework [34] for
supervised learning of concepts. Here we use the LIBSVM
implementation [2] with radial basis function and probabilis-
tic output [22]. We obtain good SVM parameter settings by
using an iterative search on a large number of SVM param-
eter combinations. We optimize SVM parameters that aim
to balance positive and negative examples (w+1 and w−1).
In addition, we also take the γ parameter into account.

We measure performance of all parameter combinations
and select the combination that yields the best performance.
We use a 3-fold cross validation on the entire 2007 devel-
opment set to prevent overfitting of parameters. Rather
than using regular cross-validation for SVM parameter op-
timization, we employ episode-constrained cross-validation
method, as this method is known to yield a more accurate
estimate of classifier performance [9].

In addition to the SVM we also experiment with Fisher’s
linear discriminant [6]. While this classifier is known to be
less effective than SVM, in terms of concept detection per-
formance, it requires no parameter tuning so classification is
relatively cheap. The Fisher’s linear discriminant assumes
normal distribution. It is used to find the linear combination
of features which best separates two classes. It minimizes
the errors in the least square sense. We use the resulting
combinations as a linear classifier. For the Fisher classifier
we use the PRTools implementation [3]. All classifiers yield
a probability measure p(ωj |~xi), which we use to rank and
to combine concept detection results.

2.2 Visual-Only Analysis

Similar to last year’s efforts we have concentrated on visual-
only analysis. As we observed that regional image features
are especially effective for concept detection, our visual anal-
ysis emphasizes three types of local image regions: 1) a reg-
ular grid; 2) interest points; and 3) segmentation blobs. For
TRECVID 2007, we have also conducted a preliminary set
of coarse experiments to verify if motion information can be
of added value.

On each region level, we aim to decompose complex scenes
in proto-concepts like vegetation, water, fire, sky etc. These
proto-concepts provide a first step to automatic access to
image content [36]. Given a fixed vocabulary of proto-
concepts, we assign a similarity score to all proto-concepts
for all regions in an image. Different combinations of a
similarity histogram of proto-concepts provide a sufficient
characterization of a complex scene.

In contrast to codebook approaches [4, 24, 32, 33, 36], we
use the similarity to all vocabulary elements [8]. A codebook
approach uses the single, best matching vocabulary element

Figure 1: Simplified overview of our visual-only analysis approach
for TRECVID 2007. Temporal image feature extraction (not shown)
was an independent component.

to represent an image patch. For example, given a blue area,
the codebook approach must choose between water and sky,
leaving no room for uncertainty. Following [8], we use the
distances to all vocabulary elements. Hence, we model the
uncertainty of assigning an image patch to each vocabulary
elements. By using similarities to the whole vocabulary, our
approach is able to model scenes that consist of elements not
present in the codebook vocabulary.

All visual features are used in isolation or in combina-
tion, with the two supervised learners. Finally, we combine
the individual concept detectors in several ways and select
the combination that maximizes validation set performance.
We highlight the major components of our TRECVID 2007
system in Fig. 1.

2.2.1 Image Feature Extraction on Regular Grids

The regular grid is constructed by dividing an image in n×n

overlapping rectangular regions. The overlap between re-
gions is one half of the region size. The number of regions
is governed by a parameter r, that indicates the number
of regions per dimension, where the two dimensions in the
image are the width and height. For example, if r = 2 then
the overlap between regions leads to 3 regions for both the
width and the height, thus yielding 3 × 3 = 9 regions.

Wiccest Features We rely on Wiccest features for image
feature extraction on regular grids. Wiccest features [11]
utilize natural image statistics to effectively model texture
information. Texture is described by the distribution of
edges in a certain image. Hence, a histogram of a Gaussian
derivative filter is used to represent the edge statistics. It
was shown in [10] that the complete range of image statis-
tics in natural textures can be well modeled with an inte-



grated Weibull distribution. This distribution is given by
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where r is the edge response to the Gaussian derivative
filter and Γ(·) is the complete Gamma function, Γ(x) =∫
∞

0
tx−1e−1dt. The parameter β denotes the width of the

distribution, the parameter γ represents the ‘peakness’ of
the distribution, and the parameter µ denotes the mode of
the distribution. The position of the mode is influenced
by uneven illumination and colored illumination. Hence, to
achieve color constancy the values for µ is ignored.

The Wiccest features for an image region consist of the
Weibull parameters for the color invariant edges in the re-
gion. Thus, the β and γ values for the x-edges and y-edges
of the three color channels yields a 12 dimensional descrip-
tor. The similarity between two Wiccest features is given
by the accumulated fraction between the respective β and γ

parameters:
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, where F and G are

Wiccest features. We compute the similarity to 15 proto-
concepts [8] for F and G. We divide an input frame into
multiple overlapping regions, and compute for each region
the similarity to 15 proto-concepts [8]. This yields regional
image feature vector W for a 2 × 2 grid and W2 for a 4 ×
4 grid.

Gabor Features In addition to the Wiccest features, we
also rely on Gabor filters for regional image feature extrac-
tion. Gabor filters may be used to measure perceptual sur-
face texture in an image [1]. Specifically, Gabor filters re-
spond to regular patterns in a given orientation on a given
scale and frequency. A 2D Gabor filter is given by:
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) the orienta-

tion. Note that a zero-frequency Gabor filter reduces to a
Gaussian filter.

In order to obtain an image region descriptor with Gabor
filters we follow these three steps: 1) parameterize the Ga-
bor filters 2) incorporate color invariance and 3) construct a
histogram. First, the parameters of a Gabor filter consist of
orientation, scale and frequency. We use four orientations,
0◦, 45◦, 90◦, 135◦, and two (scale, frequency) pairs: (2.828,
0.720), (1.414, 2.094). Second, color responses are measured
by filtering each color channel with a Gabor filter. The
W color invariant is obtained by normalizing each Gabor
filtered color channel by the intensity [12]. Finally, a his-
togram is constructed for each Gabor filtered color channel,
where we use histogram intersection as a similarity measure
between histograms. We divide an input frame into mul-
tiple overlapping regions, and compute for each region the

similarity to 15 proto-concepts [8]. This yields regional im-
age feature vector G for a 2 × 2 grid and G2 for a 4 × 4
grid.

2.2.2 Image Feature Extraction on Interest Points

Inspired by the work of Zhang [38], we also compute in-
variant descriptors based on interest points. We use the
Difference-of-Gaussians interest point detector by Lowe [19].
The region around the interest point is summarized using
one of our SIFT or color descriptors. The SIFT descrip-
tor [19] is consistently among the best performing interest
region descriptors [20, 38]. SIFT describes the local shape
of the interest region using edge histograms. To make the
descriptor invariant, while retaining some positional infor-
mation, the interest region is divided into a 4x4 grid and
every sector has its own edge direction histogram (8 bins).
Our color descriptors include color histograms in different
color spaces and color extensions of SIFT. For details, we
refer to van de Sande [26].

The indexing method used by Zhang involves a compari-
son between all images, which is not feasible on TRECVID
data. Instead, we cluster in descriptor space on descrip-
tors of up to 1,000 positive images of a concept. For all
36 TRECVID concepts we search for at least 10 clusters.
Depending on the descriptor and the data clustered on, we
obtain between 360 and 400 clusters. We use the improve-
ment over the standard codebook model as introduced in
Section 2.2 [8]. However, instead of a similarity function,
we use the Euclidean distance between the image descrip-
tors and the clusters. Summing all distances yields a fixed-
length feature vector ~F of length n, with n equal to the
number of clusters. We term this the mixed keypoint fea-
ture vector S.

2.2.3 Image Feature Extraction on Segmented Blobs

For each key frame we create segmentation blobs using the
algorithm of Felzenszwalb and Huttenlocher [5]. The al-
gorithm uses a graph based segmentation technique which
minimizes the within-region color differences. As default
settings of the algorithm we used a minimum region size
of 100 pixels, a Gaussian smoothing parameter σ of 0.8
to remove digitization artifacts, and a threshold k of 100,
which influences the number of regions per image. These
settings result in approximately 150-300 regions per im-
ages where the sizes of individual regions varies greatly.
For each segmented blob we compute the Wiccest features
and Gabor features, as detailed in Section 2.2.1, yielding
blobW,blobG, and blobWG.

2.2.4 Exploring Temporal Image Feature Extraction

We extract motion information from a video sequence by
first detecting interest points in every frame with the Harris-
Laplace corner detector, describing them with SIFT [19],
tracking these points over time based on feature similarity
and representing the obtained tracks. We assume that the
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Figure 2: Comparison of MediaMill video indexing experiments with present-day indexing systems in the TRECVID 2007 benchmark.

interest point detector will detect the same points in sub-
sequent frames when differences between them are small.
Points can appear and vanish. We address this problem by
considering feature tracking from frame to frame to be an
assignment problem. To optimize the assignment we use the
Hungarian algorithm [17, 35]. Note that we do not impose
any constraint on the possible movements of points, and
also do not perform any prediction of point locations based
on a motion model, as we want our features to be generic.

Having processed the whole video sequence, T tracks are
obtained consisting of series of point locations. We represent
these tracks by quantizing the displacement from frame to
frame in 2-dimensional motion histograms, constructed such
that the center bin represents no or very little motion. We
paste the R rows of the histogram into one (RxR)x1 feature
vector to obtain the final motion feature per track.

In our experiments we follow the approach of clustering
the raw features [16] (thereby creating ’motion codebooks’,
inspired on [18]), projecting the features per shot on the
clusters to obtain a single feature vector, learning concepts
from the projected features and evaluating with cross val-
idation on the development set. We have conducted ex-
periments using only motion features, only SIFT features,
and one in which we fused the two feature types (before
learning). Cross validation results (data not shown) indi-
cate that a combination of motion and sift features performs
marginally better than using them individually.

2.3 Submitted Concept Detection Results

An overview of our submitted concept detection results is
depicted in Fig. 2. We relied on the annotation provided by

the 2007 MCG-ICT-CAS team. We will detail each submit-
ted run below.

2.3.1 Run ‘Kronos’: Temporal Image Features

Although the issues relating track length, time coverage and
maximal speed led to intuitively imposed constraints, they
have severely effected our experiments as all the tracks from
about half the number of shots were rejected and therefore
we have processed only half of the data. Apart from too
strict constraints, this is also due to a non perfect shot seg-
mentation. Note that the performance of the SIFT features
alone is not as good as one might think due to the data
sparsity. All these issues make it very difficult to interpret
the results. For now, we take our cross validation results
(data not shown) as a clue, that a combination of visual and
motion features can indeed improve performance, baring in
mind the coarseness and simplicity of this experiment. In
coming experiments we will address the problems that have
arisen, and introduce more features based on motion that
are useful for generic content based video indexing.

2.3.2 Runs ‘Iapetus’ and ‘Crius’: Cross-Domain Gener-

alization

With the current increase of digital video, it is advanta-
geous to have a content-based indexing system that gener-
alizes well over heterogeneous sets of video collections. One
factor that influences generalization is the supervised classi-
fier that requires positive and negative annotations. These
annotations are time consuming to obtain, and it is not
guaranteed that annotations of the same concept generalize
over video domains. To test our generalization performance



over video domains, we compare two sets of annotations,
while keeping the type of features constant. To constrain
the experiment, we focus on visual analysis only. The best
performing feature, based on cross-validation performance
on this years data, is an early fusion of W2 and G2, yielding
the WG2 feature. Hence, we submitted two runs based on
the WG2 features. One run (Iapetus) is trained on the data
and annotations of this year, where the other run (Crius)
is trained on the data and annotations of the MediaMill
Challenge [31] using TRECVID 2005 data.

The results show that in most cases, detectors trained on
the 2007 development set outperform those trained on 2005
data. However, when the concept detectors trained on 2005
data outperform those trained on 2007 they often obtain our
highest overall performance. For detectors of concepts like
charts, us flag, desert and sports the number of available
learning examples in the MediaMill Challenge outperform
those provided for TRECVID 2007, which could explain the
difference in performance. However, for the concept air-
plane this explanation does not hold, as only 29 examples
are available in 2007, but still it outperforms the 2005 de-
tector which uses 428 examples (data not shown). We are
currently exploring how a combination of annotations over
multiple domains influences concept detector performance.

2.3.3 Run ‘Coeus’: Mixed Keypoint Features

This run uses interest point feature extraction combined
with different descriptors. To make interest point descrip-
tion more robust, we also include the overlapping regions
approach as an ‘interest region’ detector. With two detec-
tors (Difference-of-Gaussians and overlapping regions) and
six region descriptors, we have a total of twelve different
experiments for our mixed keypoint method. For each of
the twelve combinations of region detectors and descriptors
we have applied both Fisher and SVM classifiers, yielding
24 ranked lists of shots. For late fusion of such ranked lists
several methods exist, e.g., min, max, sum, median, and
product [7]. An extension of product fusion that is capable
to handle missing data is the geometric mean. We found
after several experiments on MediaMill Challenge data that
this geometric mean outperforms the other fusion methods.
Hence, we combine the various lists using the geometric
mean. For a single shot i the combined likelihood becomes:

exp

[
1

n

n∑

k=1

ln pk(ωj |~xi)

]
, (3)

where n equal to the number of experiments, in our case
up to five experiments, selected on a per-concept basis us-
ing cross validation. The advantage of the geometric mean
is its ability to handle a variable number of likelihoods per
shot. If the n varies between shots, the geometric means
of those shots can be compared. We use this property for
shots which do not have any interest regions: these shots
have no likelihood, but if at least one combination has a
likelihood for this shot, then we are able to compute a ge-

ometric mean. For the concepts mountain, police security,
military and people marching, this run is our top contender.

2.3.4 Run ‘Oceanus’: Fusion of Visual Experiments

through Feature Selection

This run is a late fusion of our experiments based on vi-
sual features. For the 36 TRECVID concepts all our ex-
periments mentioned before, excluding temporal image fea-
tures, are candidates for inclusion. Last year however, fus-
ing all experiments did not yield good results on MediaMill
Challenge data. Instead, we choose to use cross-validation
performance to the best one-third experiments per concept.
The fusion of the different experiments is again performed
using the geometric mean from eq. (3). The fusion of visual-
only analysis results is our second-best overall run. For the
weather, the feature selection method performs better than
all our other runs. Feature selection gives similar perfor-
mance as the selection of all experiments for office, meeting
and computer/TV screen. For water and animal, mixed in-
terest points end up behind the ‘Hyperion’ run which fuses
all experiments, while the feature selection is outperformed.
This suggests that the mixed interest point experiments
were under-represented in the experiments selected in the
‘Oceanus’ run. Therefore, we believe that our feature selec-
tion strategy leaves room for further improvement.

2.3.5 Run ‘Hyperion’: Fusion of All Visual Experiments

This run is a late fusion of all our experiments, excluding
temporal image features. For the 36 TRECVID concepts all
experiments are included. The fusion of the different exper-
iments is again performed using the geometric mean from
eq. (3). The fusion of all visual-only experiments is our best
overall run. For the concepts waterscape/waterfront, ani-
mal, car, truck, boat/ship, explosion and maps the ‘Hyper-
ion’ run outperforms our other runs. For the concepts office,
meeting and computer/TV screen our fusion runs achieve
near-identical performance. For the majority of the con-
cepts, our combination runs perform best, suggesting that
single visual experiments are not powerful enough. Also, it
is interesting that fusion of all experiments (run ‘Hyperion’)
outperforms feature selection (run ‘Oceanus’). This suggest
that our feature selection strategy can be improved upon.

2.4 Scaling-up to 572 Concept Detectors

We adopt a graceful degradation approach to further scale
our lexicon of concept detectors. We use annotations from
both the MediaMill Challenge [31] and LSCOM [21], which
are provided for TRECVID 2005 video data. And also addi-
tional annotations for a black and white and colored footage.
We employ a variation of visual features including several
W,G, and S variations in combination with Fisher’s lin-
ear discriminant. Because parameter optimization of the
SVM is expensive, performing a complete analysis for all



concepts was not feasible. We combined individual classifi-
cation results using geometric mean to yield a single com-
bined ranked result. While the performance might not be
optimal, the detectors may still be useful for semantic video
retrieval.

3 Semantic Video Retrieval

Our TRECVID 2007 search task efforts have concentrated
on automatic and interactive retrieval using the lexicon of
572 learned concept detectors. For users, remembering a
list of 572 concepts is not feasible. We therefore developed
a query suggestion engine which finds the most appropri-
ate combination of concept detectors and multilingual text
retrieval results given the topic. This yields a ranking of
the data. A convenient way of browsing the result is our
CrossBrowser [30], which allows to use both the rank and
temporal context of a shot. There are, however, many other
relevant directions which can be explored e.g. different se-
mantic threads through the data or shots visually similar
to the current shot. This year we therefore developed the
novel ForkBrowser which allows a user to browse multiple
directions, while maintaining overview.

3.1 Automatic Search

As concept lexicon size increases, topics are more likely to be
strongly associated with multiple concept detectors. Where
previously in the automatic search task we concentrated on
finding the one best detector for a topic, this year we com-
bined the results from multiple detectors per topic. In our
approach we converted detectors from ranked lists to ‘bi-
nary’ detectors, and used these to re-rank a sorted result
list. As well as the detectors from the 2007 high level fea-
ture task, we experimented with the incorporation of de-
tectors developed on the 2005 development set. We found
that these detectors helped boost retrieval performance, de-
spite having been trained on English, Arabic, and Chinese
broadcast news rather than Dutch television programs.

The primary ingredients of our automatic search system
are:

Dutch speech recognition transcripts Dutch auto-
matic speech recognition(ASR) text provided by the
University of Twente [13], with commonly occurring
stop words removed and reduced to morphological com-
ponents using the Dutch version of the Porter stemmer.

English machine translation transcripts English
machine translation (MT) text obtained by automat-
ically translating the Dutch speech recognition text,
provided by Christof Monz of Queen Mary University
of London.

38 TRECVID 2007 detectors 38 detectors trained on
TRECVID 2007 development data. This consists of the
36 detectors defined in the 2007 high-level feature task,
as well as a black-and-white and a color detector.

363 TRECVID 2005 detectors 363 detectors trained
on TRECVID 2005 development data. This consists
of detectors defined by LSCOM and MediaMill, with
duplicates and rarely occurring concepts removed [27].

In the following subsections we describe our transcript
(text) based search, our detector based search, the auto-
matic search runs, and our results.

3.1.1 Retrieval Using Transcripts

In transcript-based search we leveraged both the original
Dutch ASR transcripts, as well as the English MT tran-
scripts. Both transcripts were indexed separately. At re-
trieval time, each topic statement was automatically trans-
lated into Dutch using the online translation tool freetrans-
lation.com, allowing a search on the MT transcripts with
the original (English) topic text, and a search on ASR tran-
scripts using the translated Dutch topic text. The resulting
two ranked lists were then combined to form a single list of
transcript-based search results.

To compensate for the temporal mismatch between the
audio and the visual channels, we used our temporal re-
dundancy approach [14]. To summarise this approach, the
transcript of each shot is expanded with the transcripts from
temporally adjacent shots, where the words of the tran-
scripts are weighted according to their distance from the
central shot. The adjusted word counts are calculated ac-
cording to:

count(word, shot′) =
∑

n∈N

(γ(shotn) · count(word, shotn)),

(4)

where n is the absolute shot offset from the current shot,
N is the number of neighbouring shots to be included, and
γ(shotn) is the offset-dependent weighting of the shotn. The
weight γ is given by 0.9664n−1.2763, which we previously
found to work well for topic retrieval in the TRECVID 2003-
2006 data sets. The maximum window size N was set to
15, as performance gains beyond this window size were neg-
ligible for the same data sets. These experiments are more
fully described in [14].

After the expanded transcripts were indexed, retrieval
was done using the language modeling approach with
Jelinek-Mercer smoothing [37], a smoothing method that
we previously found to be suited to speech-based video re-
trieval [15].

For retrieval, Dutch speech recognition transcripts and
English machine translation transcripts were indexed sep-
arately. At retrieval time, the text of each topic was au-
tomatically translated into Dutch using the online transla-
tion service freetranslation.com. The original English
topic text was used to search the MT transcript, and the
translated Dutch topic was used to search the original ASR
transcript. The two lists of results were then combined.



Table 1: Automatic search run MAP scores, with highest MAP highlighted per topic

Topic ID Topic Summary UvA-MM3 UvA-MM4 UvA-MM5 UvA-MM6

0197 people walking up stairs 0.0003 0.0007 0.0119 0
0198 door being opened 0.002 0.002 0.0006 0.002

0199 person walking or riding a bicycle 0.0148 0.0176 0.1453 0.012
0200 hands at a keyboard 0.0002 0.0002 0 0.0002

0201 canal, river, or stream 0.0062 0.0061 0.0067 0.006
0202 person talking on a telephone 0.0008 0.0008 0.0001 0.0008

0203 street market scene 0.0003 0.0003 0 0.0003

0204 street protest or parade 0.0094 0.0098 0 0.0094
0205 train in motion 0.1638 0.1593 0.0116 0.1638

0206 hills or mountains 0.0013 0.0022 0.1064 0.0013
0207 waterfront with water and buildings 0.014 0.0144 0.0998 0.0109
0208 street at night 0.0002 0.0002 0.010 0.0002
0209 people sitting at a table 0.0069 0.0090 0.0265 0.0069
0210 people walking with one or more dogs 0 0 0.0001 0
0211 sheep or goats 0.0226 0.0246 0.0041 0.0226
0212 a boat moving past 0.0026 0.0027 0.0886 0.0026
0213 woman talking toward the camera in an interview 0.0047 0.0045 0.0015 0.0047

0214 very large crowd of people 0.0105 0.0113 0.1827 0.0001
0215 classroom scene 0.0004 0.0004 0.0006 0.0004
0216 bridge 0.0014 0.0021 0.0012 0.0012
0217 shots of a road through the front windshield 0.0013 0.0018 0.006 0.0016
0218 people playing musical instruments 0.0448 0.0447 0.0011 0.0447
0219 Cook character in the Klokhuis series 0.0913 0.0961 0 0.0913
0220 grayscale ... street with buildings and people 0.0019 0.0554 0.0319 0.0015

MAP 0.0167 0.0194 0.0307 0.0160

3.1.2 Retrieval Using Detectors

In detector based retrieval, we were especially concerned
with combining results from multiple detectors into a single
ranked list. First we used text matching techniques to find
potentially useful concepts for answering the topic. Subse-
quently we used a boosting approach to combine the detec-
tors, starting with a single list of results and then reordering
that list using detector results. We describe the concept se-
lection and the detector combination steps in more detail
below.

Concept Selection The first step in our detector based
search was the identification of concept detectors that might
be relevant for a given topic. In order to achieve this we first
indexed textual metadata about each concept - the concept
name, the concept description given to the annotators, and
using the WordNet links obtained in [27] the concept syn-
onyms and glosses. At retrieval time, the topic text was
matched against the text in the different concept fields. In
addition, hyponym and hypernym concepts were retrieved.
Concepts were then ranked according to the extent to which
the topic description matched the textual metadata in the
various fields.

Detector Combination When combining the detectors, we
started with a ranked list of ‘trusted results’, which could be
the results from a detector or from a text search. We then
re-ranked this list using the associated concept detectors
identified in the concept selection phase. Some detectors

are more likely to be helpful for a topic than others, so we
incorporated a number of measures to assign a weight to
each detector. In the weight assignation we distinguished
between a concept and the detector designed to find that
concept. While a concept may be very semantically related
to a given topic, the associated detector could be of low
quality and therefore not very helpful in finding relevant
shots. This also needs to be taken into account. The follow-
ing measures were used, each being normalised to a number
from 0 to 1:

1. Topic-concept match. The extent of the match between
the topic text and the concept detection, as described
in the Detector Selection section.

2. Detector performance. The detector MAP on the hold-
out/validation set, adjusted to take into account the
performance of a ‘random’ detector. For detectors
trained on 2005 data, we add an extra penalty factor
as we expect performance to degrade on the new data
set

3. Concept specificity. A measure to take into account
how frequently a concept occurs in the collection,
performing a similar function to the ‘document fre-
quency’ measure in text retrieval. Calculated as 1 −
number of relevant shots

total number of shots using the annotations on the de-
velopment collection.

For detector combination, we first convert the scored de-
tector lists into binary lists, where each shot is given a



Figure 3: Screenshots of the MediaMill Semantic Video Search Engine with the CrossBrowser.

relevance score of 1 (expected to be relevant), or 0 (ex-
pected to not be relevant). The conversion is done by
assigning a relevance of 1 to the top 2n results of each
detector, where n = number of relevant shots in training set

total number of shots in training set ×
number of relevant shots in current collection. For each
shot we then combine the three measures to assign a de-
tector weight, and boost the relevant shots on the list.

3.1.3 Submitted Automatic Search Results

We submitted four runs for automatic search, namely:

UvA-MM6 Text baseline. Retrieval using transcripts,
as described in Section 3.1.1.

UvA-MM3 Text + TRECVID 2007 assigned concepts
(trained on 2007FSD data) + black and white and
colour detectors. Use text as the ‘trusted result’ list,
and boost with detectors.

UvA-MM4 Text + TRECVID 2007 assigned concepts +
black and white and colour detectors + MediaMill and
LSCOM concepts (trained on 2005FSD data). Use text
as the ‘trusted result’ list, and boost with detectors.

UvA-MM5 Visual baseline. Retrieval using the
TRECVID 2007 assigned concepts + black and white
and colour detectors + MediaMill and LSCOM con-
cepts. Use best scoring detector as the ‘trusted result’
list, and boost with remaining detectors.

As can be seen in Table 1, the best performing run was
the visual baseline. The worst performing run was the text
baseline, which in general yielded very low MAP precision
scores. The poor performance of the text baseline is likely
due in part to the lack of topics requesting named peo-
ple and objects, which are more likely to be mentioned in
transcripts than more general statements. Another factor

may be the decreased quality of the speech recognition tran-
scripts with respect to previous years, as the sound quality
of the recordings is often noticeably lower than in the broad-
cast news data that was used before. It is not apparent from
the TRECVID runs whether our combination approach was
particularly effective, and we plan to investigate this further
in the near future.

3.2 Interactive Search: Video Browsing

In traditional video retrieval systems users may query video
archives by keyword, by example, by concept, by time or
by program, subsequently they browses through the results,
and when the results are unsatisfactory the process reiter-
ates. As a consequence of this iterative process a lot of time
is spent on query specification. Moreover, when the target
search results are not returned by the system in the initial
queries a user may run out of query ideas. To alleviate both
problems we try to depart from this traditional approach.
We do so by providing users with browsers that allow to
visualize the entire data set in multiple dimensions. This
facilitates interactive exploration. For TRECVID 2007, we
have focussed specifically on consolidation of proven effec-
tive interface components from previous TRECVID editions
into a novel browsing environment. A graphical overview of
our 2007 system is depicted in Fig. 3.

3.2.1 Video Threads

We introduce the notion of threads in order to browse
through a video data set in multiple directions. A thread is
a linked sequence of shots in a specified order, based upon
an aspect of their content [25]. We define two types of
threads: static threads which are pre-computed beforehand,
and dynamic threads which are generated on demand dur-
ing a browse session. The content of a thread is based on a
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Figure 4: Comparison of interactive video search results for 24 topics performed by 33 users of present-day video retrieval systems.
MediaMill results are indicated with special markers.

form of similarity between shots in the data set. The Medi-
aMill 2007 video search engine offers the following threads
and similarities.

• Visual threads: based on similarity between visual fea-
tures,

• Time threads: based on temporal similarity between
shots,

• Query result threads: based on similarity between shots
and a user posed query,

• History threads: based on shots a user has visited;

Each method yields a ranking of the data through which
the user has to browse.

3.2.2 Visualizing Threads using the ForkBrowser

Combination of the time thread with any other thread re-
sulted in the CrossBrowser. This browser proved effective

for interactive search in 2004 and 2005 when a single thread,
for example a single concept detector query, is sufficient to
solve the topic [28,30]. For topics that require a combination
of threads we introduced the RotorBrowser in 2006 [25,28].
This browser allows to integrate query results with time,
visual similarity, semantic similarity and various other shot
based similarity metrics. While effective, this visualization
proved overwhelming for non-expert users. To leverage the
benefits of having multiple query methods while simultane-
ously allowing the user to maintain overview, we introduce
a new interface which combines query by keyword, by ex-
ample, by 572 concepts, by time and by program into a rigid
framework: the ForkBrowser.

The ForkBrowser visualizes results by displaying ani-
mated key frames based on the shape of a fork. The contents
of the tines of the fork depend on the shot at the top of the
stem. The center tine shows unseen query results, the left-
most and rightmost tines show the time thread, and the
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Figure 5: Average Precision versus number of move interactions for both the CrossBrowser (+) and the ForkBrowser (5).

two tines in between show user assignable threads. For the
TRECVID 2007 benchmark we chose to display 2 variants
of visual similarity threads here. The stem of the fork dis-
plays the history thread. All browse directions, each tine
and the stem, are both accessible by keyboard and mouse
for quick navigation. Every displayed key frame can also be
played on demand by displaying up to 16 frames from the
originating shot. This helps answering queries containing
explicit motion rapidly.

3.2.3 Submitted Interactive Search Results

We submitted two runs for interactive search, comparing
two expert users. One user performed the interactive search
by using the MediaMill search engine with the CrossBrowser
(UvA-MM1). Another user exploited the MediaMill sys-
tem in combination with the ForkBrowser (UvA-MM2).

During the runs the system logged all user actions, which
were automatically parsed to provide browse statistics.
These include the time users spent adjusting a query, time
spent while searching for results, the number of user in-
teraction steps made during searching, the number of re-
sults selected, the thread from which results were selected,
and so on. Results in Fig. 4 indicate that for most search
topics, users of the MediaMill system score above average.
Furthermore, users of our approach obtain a top-3 average
precision result for 8 out of 24 topics. Best performance
is obtained for 4 topics. Both browsers achieve nearly the
same mean average precision (CrossBrowser: 0.259, Fork-
Browser: 0.256), but average precision scores for individ-
ual topics vary greatly. If we compare the number of in-
teraction steps required per topic with the average preci-

sion achieved for each topic (see Fig. 5) we observe that
the ForkBrowser required significantly less user interaction
within the 15 minute time frame. A thorough analysis of
the browsing results is underway. A first analysis of Fork-
Browser results indicates that each topic required a different
combination of threads in order to find good results. See
Fig. 6 for an overview of thread usage for a selected set of
topics.

Acknowledgments

This research is sponsored by the European VIDI-Video
project, the BSIK MultimediaN project, and the NWO
MuNCH project. The authors are grateful to NIST and
the TRECVID coordinators for the benchmark organization
effort.

time (5057)

24.8%

initial query (773)

28.7%

unknown (9)55.6% mouse (2)50.0%

CrossBrowser

time (1709)

48.3%

visually similar (342)

47.7%

initial query (308)

44.5%
unknown (255)

37.3%
history (96)

50.0%
mouse (94)38.3%

ForkBrowser

Figure 6: These graphs shows how many results were obtained from
each thread, and which percentage of them was judged relevant.
Left: CrossBrowser results. Right: ForkBrowser results.



References

[1] A. C. Bovik, M. Clark, and W. S. Geisler. Multichannel
texture analysis using localized spatial filters. IEEE Trans.

Pattern Analysis and Machine Intelligence, 12(1):55–73,
1990.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for

support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[3] R. Duin et al. PRTools version 4.0: A matlab toolbox for
pattern recognition, 2006. http://www.prtools.org/.

[4] L. Fei-Fei and P. Perona. A bayesian hierarchical model for
learning natural scene categories. In CVPR, 2005.

[5] P. Felzenszwalb and D. Huttenlocher. Efficient Graph-
Based Image Segmentation. Int’l J. Computer Vision,
59(2):167–181, 2004.

[6] R. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7:179–188, 1936.

[7] E. Fox and J. Shaw. Combination of multiple searches. In
TREC-2, pages 243–252, 1994.

[8] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman,
C. G. M. Snoek, and A. W. M. Smeulders. Robust scene
categorization by learning image statistics in context. In
Int’l Workshop SLAM, CVPR’06, New York, USA, 2006.

[9] J. C. van Gemert, C. G. M. Snoek, C. Veenman, and
A. W. M. Smeulders. The influence of cross-validation on
video classification performance. In Proc. ACM Int’l Conf.

Multimedia, pages 695–698, Santa Barbara, USA, 2006.
[10] J.-M. Geusebroek and A. W. M. Smeulders. A six-stimulus

theory for stochastic texture. Int’l J. Computer Vision,
62(1/2):7–16, 2005.

[11] J.-M. Geusebroek. Compact object descriptors from lo-
cal colour invariant histograms. In British Machine Vision

Conference, Edinburgh, UK, 2006.
[12] M. A. Hoang, J. M. Geusebroek, and A. W. M. Smeulders.

Color texture measurement and segmentation. Signal Pro-

cessing, 85(2):265–275, 2005.
[13] M. Huijbregts, R. Ordelman, and F. de Jong. Annotation of

heterogeneous multimedia content using automatic speech
recognition. In Proc. Int’l Conf. Semantics And digital Me-

dia Technologies, LNCS, Berlin, 2007. Springer Verlag.
[14] B. Huurnink and M. de Rijke. Exploiting redundancy in

cross-channel video retrieval. In Proc. ACM Int’l Workshop

MIR, pages 177–186, Augsburg, Germany, 2007.
[15] B. Huurnink and M. de Rijke. The value of stories for

speech-based video search. In Proc. ACM CIVR, pages 266–
271. Amsterdam, The Netherlands, 2007.

[16] F. Jurie and B. Triggs. Creating efficient codebooks for
visual recognition. In Int’l Conf. Computer Vision, 2005.

[17] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistic Quarterly, 2:83–97, 1955.

[18] T. Leung and J. Malik. Representing and recognizing the
visual appearance of materials using three-dimensional tex-
tons. Int’l J. Computer Vision, 43(1):29–44, 2001.

[19] D. Lowe. Distinctive image features from scale-invariant
keypoints. Int’l J. Computer Vision, 60(2):91–110, 2004.

[20] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, 27(10):1615–1630, 2005.
[21] M. Naphade, J. Smith, J. Tesic, S.-F. Chang, W. Hsu,

L. Kennedy, A. Hauptmann, and J. Curtis. Large-scale con-
cept ontology for multimedia. IEEE Multimedia, 13(3):86–
91, 2006.

[22] J. Platt. Probabilities for SV machines. In A. Smola, et al.,
editors, Advances in Large Margin Classifiers, pages 61–74.
MIT Press, 2000.

[23] C. Petersohn. Fraunhofer HHI at TRECVID 2004: Shot
boundary detection system. In Proc. TRECVID Workshop,
Gaithersburg, USA, 2004.

[24] P. Quelhas, F. Monay, J. M. Odobez, D. Gatica-Perez,
T. Tuytelaars, and L. V. Gool. Modeling scenes with local
descriptors and latent aspects. In IEEE Int’l Conf. Com-

puter Vision, 2005.
[25] O. de Rooij, C. G. M. Snoek, and M. Worring. Query on

demand video browsing. In Proc. ACM Int’l Conf. Multi-

media, pages 811–814, Augsburg, Germany, 2007.
[26] K. Sande. Coloring concept detection in video using interest

regions. Master’s thesis, University of Amsterdam, 2007.
[27] C. G. M. Snoek, B. Huurnink, L. Hollink, M. de Rijke,

G. Schreiber, and M. Worring. Adding semantics to detec-
tors for video retrieval. IEEE Trans. Multimedia, 9(5):975–
986, 2007.

[28] C. G. M. Snoek, J. C. van Gemert, T. Gevers, B. Huurnink,
D. C. Koelma, M. van Liempt, O. de Rooij, K. E. A. van de
Sande, F. J. Seinstra, A. W. M. Smeulders, A. H. C. Thean,
C. J. Veenman, and M. Worring. The MediaMill TRECVID
2006 semantic video search engine. In Proc. TRECVID

Workshop, Gaithersburg, USA, 2006.
[29] C. G. M. Snoek, M. Worring, J.-M. Geusebroek, D. C.

Koelma, F. J. Seinstra, and A. W. M. Smeulders. The se-
mantic pathfinder: Using an authoring metaphor for generic
multimedia indexing. IEEE Trans. Pattern Analysis and

Machine Intelligence, 28(10):1678–1689, 2006.
[30] C. G. M. Snoek, M. Worring, D. C. Koelma, and A. W. M.

Smeulders. A learned lexicon-driven paradigm for interac-
tive video retrieval. IEEE Trans. Multimedia, 9(2):280–292,
2007.

[31] C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M.
Geusebroek, and A. W. M. Smeulders. The challenge prob-
lem for automated detection of 101 semantic concepts in
multimedia. In Proc. ACM Int’l Conf. Multimedia, pages
421–430, Santa Barbara, USA, 2006.

[32] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. De-
scribing visual scenes using transformed dirichlet processes.
In Y. Weiss, et al., editors, Advances in NIPS, pages 1299–
1306. MIT Press, Cambridge, MA, 2006.

[33] A. Vailaya, M. Figueiredo, A. Jain, and H. Zhang. Image
classification for content-based indexing. IEEE Trans. Im-

age Processing, 10(1):117–130, 2001.
[34] V. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag, New York, USA, 2nd edition, 2000.
[35] C. J. Veenman, M. J. T. Reinders, and E. Backer. Re-

solving motion correspondence for densely moving points.
IEEE Trans. Pattern Analysis and Machine Intelligence,
23(1):54–72, 2001.

[36] J. Vogel and B. Schiele. Natural scene retrieval based on a
semantic modeling step. In CIVR, Dublin, Ireland, 2004.

[37] C. Zhai and J. Lafferty. A study of smoothing methods
for language models applied to information retrieval. ACM

Trans. Information Systems, 22(2):179–214, 2004.
[38] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local

features and kernels for classification of texture and object
categories: A comprehensive study. Int’l J. Computer Vi-

sion, 73(2):213–238, 2007.


