
Shot Boundary Detection at TRECVID 2007

Yoshihiko Kawai † Hideki Sumiyoshi † Nobuyuki Yagi †

†Science and Technical Research Laboratories, NHK
1–10–11 Kinuta, Setagaya–ku, Tokyo, Japan

Abstract
Shot boundary detection is one of the most funda-
mental processes in video analysis, and it requires
high detection accuracy and high-speed processing.
This paper proposes a method of shot boundary
detection based on multiple features. The pro-
posed method enables precise, high-speed detection
by omitting the processing of frames that are clearly
not shot boundaries, and by analyzing various fea-
tures only for the parts of the video that are likely
to contain shot boundaries. An experiment using
TRECVID 2007 test data resulted in a recall rate of
90.5% and a precision rate of 94.4%. About 425 min-
utes of test data was processed in 3 minutes 28 sec-
onds (excluding the MPEG1 decoding time), 1/123
of the real time.

1 Introduction
A shot is a basic unit of video, and dividing video
into shots is the first step in video analysis. It is
necessary to detect shot boundaries, which are the
connection points between one shot and another, to
divide video into shots. Shot boundaries can be
broadly classified into two types: abrupt transitions
and gradual transitions. Abrupt transitions are in-
stantaneous transitions from one shot to the sub-
sequent shot. This is also called a cut. Gradual
transitions include dissolves and fades, in which one
frame is transformed into another as the proportion
of each frame is gradually changed; wipes, in which
the boundary between shots moves spatially; and
special effects, in which shapes and positions are
transformed three-dimensionally during the transi-
tion.

Shot boundaries can be detected on the basis of
a characteristic that the similarity between adjacent
frames within the same shot is high, but is low if a
shot boundary exists between the frames. Various
methods have been proposed to measure the degree
of similarity between frames, such as the differences
of luminance histogram [1, 2, 3], edge variation [4],

and mutual information between pixels [5]. Distri-
butions of pixel values [6] and DCT coefficients [7]
have also been proposed for gradual transitions. In
recent years, methods that combine some of these
features in order to increase the detection accuracy
have been proposed [8, 9, 10, 11]. These methods
calculate multiple features for each frame, and then
classify them as either a “shot boundary” or “not
shot boundary”, using classification algorithm such
as fuzzy c-means or support vector machine. One
problem with conventional methods that make use
of multiple features is the high computational cost
of calculating all the features for each frame. The
computing cost is particularly high in cases where
complex features are used, or where a large number
of features are used. Since the shot boundaries in-
cluded in TV programs typically amount to less than
1% of total frames, it is inefficient to apply bound-
ary detection processing indiscriminately to all the
frames.

This paper proposes a high-speed, high-precision
shot boundary detection method. Our method skips
the processing of frames that are clearly not shot
boundaries, and calculates various features only for
the parts of the video that are likely to contain shot
boundaries. This enables high detection accuracy
with low computational cost.

2 Shot boundary detection
An overview of our method is shown in Figure 1.
First, frame images are extracted from the input
video in the decoder. Next, the extracted frame im-
ages are analyzed to determine the shot boundaries.
Processing for abrupt transitions and gradual transi-
tions is done in parallel to reduce missed detections.
A gradual transition is analyzed in the order of fades,
dissolves, and long dissolves. Whenever a gradual
transition is detected, the remaining processing for
other types of gradual transition is not performed.
To avoid missing long dissolves, these are handled
separately from normal dissolves. Furthermore, fea-

Decoder Cut
detector

Abrupt transition

Gradual transition

Fade in/out
detector

Dissolve
detector

Long dissolve
detector

Integrator

MPEG1 XML

Frame
features

not
detected

not
detected

detected

detected

Figure 1: Overview of proposed method

Sum of absolute difference

Difference based on block matching

Flash ?

Start

Cut

Delta of frame difference

> Tsad

> Tcut

Not cut

No

(a)

(b)

(c)

(d)

<= Tsad

<= Tcut

Yes

Figure 2: Diagram of cut detection

tures of frames are shared by all the detection pro-
cessing and the system ensures that the same type
of feature is not calculated redundantly. The final
detection results are produced at the integrator, by
integrating the overlapping transitions.

The details of each detection processing are ex-
plained in the following sections.

3 Cut detector
Cut transitions are detected based on the differences
between adjacent frames. Figure 2 shows a diagram
for detecting cuts. First, frames that show no sig-
nificant change are determined by using the sum of
the absolute differences between pixel R, G, and B
values, dsad (Figure 2(a)). The calculation formula
of dsad is shown in Eq. (1).

dsad(fi−1, fi) =
1
|F|

∑
r∈F

|fi−1(r) − fi(r)| (1)

fi(r) indicates the pixel value at coordinates r of
the ith frame. F represents the pixels of the overall
frame, and |F| represents the total number of pixels

f i-1

Search range

Bn

Previous frame Current frame f i

Sn

dhist

Figure 3: Block matching

in a frame. The formula described here has been
simplified to avoid undue complexity, but in prac-
tice, the sum of differences for each of the R, G, and
B values is required. If dsad is less than a threshold
Tsad, it is judged that the frame cannot be a shot
boundary, and the remaining processing is skipped.

In contrast, if dsad is above the threshold, a more
precise frame difference is calculated (Figure 2(b)).
Here, the frame difference based on block matching,
dbm is used, which is robust against camera oper-
ations (e.g. zoom in/out, pan and tilt) or object
motions. A detailed explanation of dbm is given in a
later section.

Next, it is determined whether a cut transition
exists between frames based on the frame difference
dbm (Figure 2(c)). Our method detects a cut when
the increase in frame difference dbm exceeds a certain
threshold, because dbm can vary significantly due to
strong movements of the camera or the object, re-
sulting in false detections. Equation (2) shows the
condition for this decision. If Eq. (2) is true, a cut is
detected between frame i−1 and frame i. Otherwise,
the processing is terminated here.

dbm(fi−1, fi) − dbm(fi−2, fi−1) > Tcut (2)

Finally, whether a detected transition is a false
detection caused by the flash illumination of a still
camera is determined (Figure 2(d)).

The processes shown in Figure 2(b) and Figure
2(d) are explained in detail in 3.1 and 3.2, respec-
tively.

3.1 Difference based on block matching
Figure 3 shows an outline of block matching. In
the block matching method, the current frame is di-
vided into non-overlapping block regions, and then
the previous frame is searched to find the position
of minimum inter-block cost for each block of the
current frame. The frame difference is calculated
by adding up the total number of blocks for which

the cost is higher than a threshold. The calculation
formula of dbm is shown in Eq. (3).

dbm(fi−1, fi)=
1
N

N∑
n=1

1 if λn(fi−1, fi)>Tλ (3)

N represents the total number of blocks, and λn rep-
resents the minimum value of the inter-block cost
for the nth block. Tλ is the threshold. The sum of
squared differences or the sum of absolute differences
is generally used as the inter-block cost to achieve
motion vectors for video encoding. In contrast, our
method adopts the sum of absolute histogram differ-
ences which is more robust to camera motions. λn

is calculated using Eq. (4).

λn(fi−1, fi) =
min
v∈Sn

{dhist (fi−1(r+v), fi(r)) , r ∈ Bn} (4)

Here, Sn indicates the search range, and Bn indi-
cates the pixels contained within the nth block re-
gion. dhist represents the sum of absolute histogram
differences. dhist is calculated by creating a fre-
quency histogram of pixel values for each block re-
gion and then computing the sum of the absolute
differences for each bin. Equation (5) shows the for-
mula for calculating dhist.

dhist(fi−1, fi) =
1

Nc

Nc∑
c=1

|Hi−1(c) − Hi(c)| (5)

Nc represents the total number of histogram bins,
and Hi(c) represents the number of pixels in frame
i contained in the cth bin.

The most computationally expensive processing in
block matching is searching for block position v, as
shown in Eq. (4). The proposed method attempts to
speed up block matching by reducing the amount of
calculation in this search processing. Various block
search algorithms have been proposed to speed up
block matching, and our method uses the dual cross
search algorithm (DCS) [12], which is one of the
fastest. Additionally, the proposed method tries to
further boost its speed by cutting off the search pro-
cessing using a threshold Tλ. In a preliminary ex-
periment, we found that the calculation amount for
searching v could be reduced by a factor of 1/600
compared to that with a simple full search algorithm.

3.2 Flash detection
The sudden change in luminance resulting from flash
illumination can cause erroneous detection. The

proposed method therefore needs to ensure that de-
tected cut transitions are not false detections due to
flash illumination from a still camera.

When a flash is used, the luminance for the first
several frames increases, after which the luminance
returns to the previous level. Thus, the proposed
method first produces the image f ′

i , each pixel of
which has the minimum value of corresponding pix-
els in the following Nf frames. The calculation is
shown in Eq. (6).

f ′
i(r) = min

(
fi(r), fi+1(r), .., fi+Nf

(r)
)

(6)

If fi is a frame whose luminance has increased due
to flash illumination, frames fi−1 and f ′

i will have
similar image features. Thus, if the frame differ-
ence d(fi−1, f

′
i) is lower than a threshold Tcut, the

potential shot boundary is judged to be a false de-
tection. Equation (7) shows the formula to calculate
the frame difference d.

d(fi−1, fi) ={
0 if dsad(fi−1, fi) < Tsad

dbm(fi−1, fi) otherwise
(7)

The calculation amount is reduced by omitting com-
putationally intensive block matching when dsad is
less than a threshold, in the same way as for cut
determination.

4 Fade in/out detector
A fade in is a transition where the luminance of a
frame gradually increases from a black frame. Con-
versely, a fade out is a transition where the lumi-
nance gradually decreases towards a black frame.
The proposed method tries to detect fades by focus-
ing on this black frame. A diagram of the method is
shown in Figure 4.

First, it is determined whether the current frame
is a black frame (Figure 4(a)). The mean luminance,
as shown in Eq. (8), and the number of pixels whose
luminance is less than a threshold Tblack, as shown
in Eq. (9), are used for the determination.

fi =
1
|F|

∑
r∈F

fi(r) (8)

black(fi) =
1
|F|

∑
r∈F

1 if fi(r)<Tblack (9)

If the current frame is not a black frame, processing
is stopped. Otherwise, whether the current frame is
the end point of a fade out or the starting point of
a fade in is determined.

Start

Fade

Monotone increasing/decreasing of luminance

Duration

Cosine similarity

Black frame ?

Yes

Yes

<= Tsim

Not fade

> Tdur

(a)

(b)

(c)

(d)

No

No

> Tsim

<= Tdur

Figure 4: Diagram of fade in/out detection

A section of fade in/out is detected based on con-
secutive monotonic increases/decreases in luminance
(Figure 4(b)). The following formulas are used for
the determination: Eq. (10) is for monotonic in-
creases and Eq. (11)) is for monotonic decreases. If
the result of one of these formulas exceeds a thresh-
old Tfade, a monotonic increase/decrease is detected.

inc(fi−1, fi)=
1
|F|

∑
r∈F

1 if fi(r)>fi−1(r) (10)

dec(fi−1, fi)=
1
|F|

∑
r∈F

1 if fi(r)<fi−1(r) (11)

These equations can be satisfied also when low lumi-
nance objects appear in the frame, and this causes
erroneous detection. Thus, if the similarity between
adjacent frames within the fade section is less than
a threshold Tsim, a false detection is judged to have
occurred (Figure 4(c)). The similarity is calculated
using Eq. (12).

sim(fi−1,fi)=
∑

r∈F fi−1(r) · fi(r)√∑
r∈Ff2

i−1(r)
∑

r∈Ff2
i (r)

(12)

This similarity is calculated based on the cosine
of frame images, which is insensitive to luminance
changes over the whole frame.

Finally, if the duration of the fade section is
greater than a threshold Tdur, a fade transition is
detected (Figure 4(d)).

5 Dissolve detector
Dissolve-type shot transitions can be modeled as Eq.
(13).

fi(r) = (1−α)·fb(r)+α·fe(r), 0 ≤ α ≤ 1 (13)

Here, fb represents the start frame of the dissolve,
fe represents the end frame, and α is a constant that
varies between 0 and 1. The proposed method tries
to detect dissolve sections using two kinds of feature
based on this model.

The first feature is based on monotonic luminance
changes. When a shot changes to another shot ac-
cording to Eq. (13), each pixel in a frame is either
monotonically increasing or monotonically decreas-
ing. Therefore, the total number of monotonically
varying pixels is calculated by comparison with pre-
vious or subsequent frames, and this value is used as
the first feature. The first feature is defined as Eq.
(14) and Eq. (15).

diss(fi−1, fi, fi+1) =
1
|F|

∑
r∈F

mono(fi−1(r), fi(r), fi+1(r)) (14)

mono(v1, v2, v3) = 1
if (v1 > v2 > v3) or (v1 < v2 < v3) (15)

Another feature is the difference relative to an
ideal dissolve. The relationship given in Eq. (16)
must be satisfied during an ideal dissolve section.

fi(r) =
fi−1(r) + fi+1(r)

2
(16)

The difference shown in Eq. (17) is calculated and
utilized as another feature.

err(fi−1, fi, fi+1) =
1
|F|

∑
r∈F

∣∣∣∣fi−1(r) + fi+1(r)
2

− fi(r)
∣∣∣∣ (17)

A diagram of dissolve detection is shown in Figure
5. First, the sum of absolute differences between the
current frame i and the Ndth frame prior to the cur-
rent frame, dsad(fi−Nd

, fi) (Figure 5(a)). If dsad is
less than a threshold Tsad, it is judged that there are
no shot transitions within the section, and the pro-
cess is terminated. Otherwise, the dissolve section
will be searched based on the two kinds of feature
described above.

Here, the features calculated with Eq. (16) and
Eq. (17) are not robust with respect to camera
operations and object motions because these fea-
tures consider only three continuous frames. Thus,

Start

Dissolve

Monotone change rate of luminance

Cosine similarity between fb and fe

Smoothness of fb and fe

Difference from ideal frame

Frame difference between fb and fe

Sum of absolute difference between fi and fi-Nd

Histogram difference between fb and fe

> Tsad

> Tdiss

>= Terr

<= Tsim

> Tsmooth

> Thist

> Tcut

Not dissolve

Duration

> Tdur

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

<= Tsad

<= Tdiss

< Terr

<= Tdur

> Tsim

<= Tsmooth

<= Thist

<= Tcut

Figure 5: Diagram of dissolve detection

i-2f i-1f i f i+1f i+2f

Figure 6: Dissolve detection based on monotonic lu-
minance change

our method calculates features based on four points,
making use of five continuous frames, as shown in
Figure 6. The calculation formula is shown in Eq.
(18) and Eq. (19). Continuous frames that satisfy
both of the equations are judged to be dissolve sec-
tions (Figure 5(b) and (c)).

diss(fi−2, fi−1, fi)+diss(fi−1, fi, fi+1)
+diss(fi, fi+1, fi+2)+diss(fi−2, fi, fi+2)>Tdiss

(18)

err(fi−2, fi−1, fi)+err(fi−1, fi, fi+1)
+err(fi, fi+1, fi+2)+err(fi−2, fi, fi+2)<Terr

(19)

Figure 7: Example of frame which causes false de-
tection

The next step is to verify the detected dissolve
sections. First, whether the duration of the section
is sufficiently long is checked (Figure 5(d)). If the
duration is less than a threshold Tdur, detection pro-
cessing is terminated.

Next, whether luminance variation has occurred
is checked. A smooth variation of luminance over
time, due for example to changes in camera aper-
ture, can satisfy Eq. (18) and Eq. (19), and cause
false detections. The similarity between the begin-
ning frame fb, and ending frame fe of the dissolve
section is therefore calculated, and if the similar-
ity is higher than a threshold, the detected section
is considered a false detection (Figure 5(e)). The
similarity is calculated using Eq. (12), because this
equation is robust against luminance variation.

In addition, when images that show smooth spa-
tial variation in luminance, like that in Figure 7,
move in a particular direction, Eq. (18) and Eq. (19)
can be satisfied, resulting in false detection. Equa-
tion (20) is therefore used to determine whether fb

and fe are images that have smooth backgrounds
(Figure 5(f)).

smooth(fi) =
1

4|F|
∑

(x,y)∈F

{s1(fi)+s2(fi)+s3(fi)+s4(fi)} (20)

s1(fi)=mono(fi(x−1,y),fi(x,y),fi(x+1,y)) (21)
s2(fi)=mono(fi(x,y−1),fi(x,y),fi(x,y+1)) (22)
s3(fi)=mono(fi(x−1,y−1),fi(x,y),fi(x+1,y+1)) (23)
s4(fi)=mono(fi(x−1,y+1),fi(x,y),fi(x+1,y−1)) (24)

If smooth(fb) or smooth(fe) are above the threshold
Tsmooth, the difference between the histograms of fb

and fe is calculated using Eq. (5), and if this value
is lower than a threshold Thist, the detected section
is judged to be a false detection (Figure 5(g)).

Finally, the difference between frames fb and fe

is calculated using Eq. (7), and if the variation of
frame difference is greater than a threshold Tcut, a
dissolve transition is detected (Figure 5(h)).

Table 2: Evaluation result of shot boundary detection

Run
Overall Cut Gradual Frame based

R P F R P F R P F R P F

4 0.937 0.859 0.896 0.961 0.939 0.968 0.680 0.369 0.478 0.662 0.872 0.753

1 0.921 0.913 0.917 0.946 0.951 0.948 0.650 0.554 0.598 0.652 0.879 0.749

2 0.905 0.944 0.924 0.933 0.965 0.949 0.607 0.691 0.646 0.683 0.899 0.776

3 0.888 0.960 0.923 0.916 0.975 0.945 0.578 0.768 0.660 0.706 0.887 0.786

5 0.867 0.966 0.914 0.896 0.980 0.936 0.544 0.767 0.637 0.709 0.910 0.797

Table 1: Threshold settings

Threshold
Run

4 1 2 3 5

Tsad 15

Tcut 30 35 40 45 50

Tλ 30

Nf 3

Tblack 13

Tfade 55

Tdur 5

Tsim 90

Nd 10

Tdiss 30 35 40 45 50

Terr 70

Tsmooth 40

Thist 40

Nl 2

6 Long dissolve detector
The pixel value may not change between adjacent
frames when the dissolve duration is very long. Such
long dissolves will not be detected by the method
described in the previous section, because Eq. (18)
and Eq. (19) will not be satisfied. To ensure long
dissolves are detected, the frame interval in Eq. (18)
and Eq. (19) is expanded by a factor of Nl. Equation
(25) and Eq. (26) show the formulas.

diss(fi−2Nl
, fi−Nl

, fi)+diss(fi−Nl
, fi, fi+Nl

)
+diss(fi, fi+Nl

, fi+2Nl
)+diss(fi−2Nl

, fi, fi+2Nl
)
(25)

err(fi−2Nl
, fi−Nl

, fi)+err(fi−Nl
, fi, fi+Nl

)
+err(fi, fi+Nl

, fi+2Nl
)+err(fi−2Nl

, fi, fi+2Nl
)

(26)

All other processing for long dissolves is done in the
same way as for normal dissolves.

7 Experiment
We carried out an experiment with TRECVID 2007
test data using multiple combinations of thresh-
olds. The threshold combinations were determined

based on trials for several TV program genres (e.g.
drama, baseball, soccer and documentary) broadcast
in Japan, and these thresholds were used in Run 1.
We varied these thresholds, and carried out a total
of five runs. The thresholds used in the experiment
are shown in Table 1.

The number of frame divisions for block matching
was 10 × 10 = 100 blocks, and the number of his-
togram bins used for calculating the inter-block cost
was 16 for each R, G and B color. For detection pro-
cessing, we used frame images of 176 × 144 pixels,
obtained by 1/2 down-sampling.

7.1 Evaluation result
The evaluation results for the five runs are shown in
Table 2. In the table, R stands for recall rate, P for
precision rate, and F for F-measure. In the overall
results, Run 2 achieved the highest F-measure. The
recall rate of 90.5% and precision rate of 94.4% rep-
resent extremely high detection accuracy. For cuts,
the best result was from Run 4, while for gradual
transitions the best result was from Run 3. For
frame-based comparative results in gradual transi-
tions, Run 5 was the best. Run 1 showed average
accuracy for each performance measure.

We also investigated the incidence of missed de-
tections and false detections. For cuts, the recall
rate was very low (about 50%) for monochrome film
video included in the test data. Many missed detec-
tions occurred because the changes between frames
at the shot boundary were small. Figure 8(a) shows
an example. Missed detections also occurred at tran-
sitions between similar shots, and dark shots such as
night scenes, as shown in Figure 8(b). We have to
consider dynamically adjusting the number of bins
for the histogram difference and thresholds accord-
ing to the input video to avoid missed detections.
False detections were caused by the appearance of
large graphic overlays (Figure 9(a)) or objects pass-
ing in front of the camera (Figure 9(b)).

For gradual transitions, missed detections were
mostly caused by movements of the camera or ob-
jects during the transition. The dissolve model de-

(a) (b)

(c)
Figure 8: Example of missed detections

(a) (b)

(c)
Figure 9: Example of false detections

scribed by Eq. (13) assumes that the frames within
the transition section are still. Therefore, if there is
camera movement or object motion, the conditions
for dissolve detection are not satisfied. An exam-
ple of such a missed detection is shown in Figure
8(c). Dissolve detection failed due to the variation
in the luminance caused by the change in the wa-
ter surface. Our system also failed to detect wipes
and special effects, which are not targeted by the
proposed method. Figure 9(c) shows an example of
false detections caused by object motion. We have
to consider a method that can distinguish dissolves
from object motion by using, for example, edge or
frequency features.

7.2 Processing time

The computer used for the experiment had an Intel
Core 2 Duo E6600 2.40 GHz processor and 2 GB of
RAM. The processing times for about 425 minutes of
test data are shown in Table 3. The “Segmentation”
column represents the time required for shot bound-
ary detection, while the “Decode” column represents

Table 3: Processing time (mm:ss)
Run Segmentation Decode Total

4 03:35 24:42 28:17

1 03:29 24:36 28:05

2 03:26 24:37 28:03

3 03:26 24:39 28:05

5 03:24 24:39 28:03

Avg. 03:28 24:39 28:07
(1/123) (1/17) (1/15)

the processing time needed for decoding MPEG1
video and extracting frames. The “Total” column
shows the total processing time, which is equal to
the sum of the segmentation time and the decode
time. The“Avg.”row shows the mean processing
time for the five runs, and the ratio to real time.

The average total processing time was about 28
minutes, or 1/15 of real time. Our system could
greatly reduce the computational cost by skipping
the processing of frames that are clearly not bound-
ary shots. Additionally, the segmentation time
which does not include the time for MPEG1 decod-
ing amounted to a mere 3 minutes 28 seconds, only
about 1/123 of real time. Further speed improve-
ments should be attainable by optimizing the video
decoding processing.

8 Conclusion

We proposed a method for detecting shot bound-
aries that utilizes multiple features. The pro-
posed method enabled accurate and high-speed shot
boundary detection by omitting the processing of
frames that are clearly not shot boundaries and cal-
culating detailed features only for parts of the video
that are likely to contain transitions. In the experi-
ments with TRECVID 2007 test data, a recall rate
of 90.5% and a precision rate of 94.4% were achieved.
In addition, our system could process about 425 min-
utes of test data in 3 minutes 28 seconds, only 1/123
of the real time.

Future work will include methods to determine
thresholds for each detection process. Some kinds
of machine learning algorithms will be considered to
determine optimal combination of thresholds. We
also have to consider a method for use with video
data that has small luminance changes, such as
monochrome video, and a detection method for dis-
solves which include camera or object motions. Fur-
thermore, we will extend the method to detect other
kinds of transitions, such as wipes and special effects.

References
[1] H.Zhang and S.S.A.Kankanhalli, “Automatic par-

titioning of full-motion video,” ACM Multimedia

Systems, vol.1, no.1, pp.10–28 (1993).

[2] J.S.Boreczky and L.A.Rowe, “Comparison of video

shot boundary detection techniques,” in Proc.

SPIE, vol.2664, pp.170–179 (1996).

[3] B.T.Truong, C.Dorai and S.Venkatesh, “New en-

hancements to cut, fade, and dissolve detection pro-

cesses in video segmentation,” in Proc. ACM Mul-

timedia, pp.219–227 (2000).

[4] R.Zabih, J.Miller and K.Mai, “A feature-based al-

gorithm for detecting and classifying production ef-

fects,” Multimedia Systems, vol.7, no.2, pp.119–128

(1999).

[5] Z.Cernekova, I.Pitas and C.Nikou, “Information

Theory-Based Shot Cut/Fade Detection and Video

Summarization,” IEEE Trans. Circuits and Systems

for Video Tech., vol.16, no.1, pp.82–91 (2006).

[6] J.Nam and A.H.Tewfik, “Detection of Gradual

Transitions in Video Sequences Using B-Spline In-

terpolation,” IEEE Trans. Multimedia, vol.7, no.4,

pp.667–679 (2005).

[7] R.A.Joyce and B.Liu, “Temporal Segmentation of

Video Using Frame and Histogram Space,” IEEE

Trans. Multimedia, vol.8, no.1, pp.130–140 (2006).

[8] X.Gao and X.Tang, “Unsupervised Video-Shot Seg-

mentation and Model-Free Anchorperson Detection

for News Video Story Parsing,” IEEE Trans. Cir-

cuits and Systems for Video Technology, vol.12,

no.9, pp.765-776 (2002).

[9] C-W.Ngo, “A robust dissolve detector by support

vector machine,” in Proc. ACM Int. Conf. Multi-

media, pp.283–286 (2003).

[10] H.Feng, W.Fang, S.Liu and Y.Fang, “A New Gen-

eral Framework for Shot Boundary Detection Based

on SVM,” in Proc. IEEE ICNN&B, vol.2, pp.1112–

1117 (2005).

[11] K.Matsumoto, M.Naito, K.Hoashi and F.Sugaya,

“SVM-Based Shot Boundary Detection with a

Novel Feature,” In Proc. IEEE Int. Conf. Multi-

media and Expo, pp.1837–1840 (2006).

[12] X.-Q.Banh and Y.-P.Tan, “Adaptive Dual-Cross

Search Algorithm for Block-Matching Motion Es-

timation,” IEEE Trans. Consumer Electronics,

vol.50, no.2, pp.766–775 (2004).

