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Abstract. In TRECVID 2007 high-level feature (HLF) detection, we extend the well-known LIBSVM

and develop a toolkit specifically for HLF detection. The package shortens the learning time and provides

a framework for researchers to easily conduct experiments. We efficiently and effectively aggregate

detectors of training past data to achieve better performances. We propose post-processing techniques,

concept reranking and temporal filtering, to exploit inter-concept contextual relationship and inter-shot

temporal dependency. The overall improvement is 46% over that by our baseline in terms of infMAP .

We briefly summarize our six submitted runs in this abstract. The run (runid: A nt20Giants 6) adopts

multiple low-levels features (all visual features), SVM models, ensemble bagging classifier, and multi-

modal fusion. We take this setting as our baseline. We then experiment with post-processing methods

and the leverage of classifiers using past data. The proposed post-processing framework is firstly applied

to the baseline to obtain a new run (runid: A ntMonster 4). in terms of infMAP , this new run improves

16.7% over the baseline The runs, A ntTank05 1 and A ntTransformer 5, aggregate classifiers of using

past data by averaging and weighted averaging their results, respectively. The results of these two

runs, A ntTank05 1 and A ntTransformer 5, are respectively 17.3% and 25.0% higher than that of

A ntMonster 4. Based the observation of our experimental results, we conclude that post-processing

and using past data are helpful to improve HLE detection.

Table 1. Description of each submitted run

HLF Run infMAP Description

A nt20Giants 6 0.0599 BASELINE: 20 bagging classifiers, multi-modal average fusion.

A ntMonster 4 0.0699 bagging classifiers, weighted fusion, post-processing.

A ntTank05 1 0.0820 bagging classifiers, weighted fusion, average aggregation, post-processing.

A ntTransformer 5 0.0874 bagging classifiers, weighted fusion, weighted aggregation, post-processing.

A ntReranking 3 0.0756 bagging classifiers, weighted fusion, average aggregation, reranking.

A ntFiltering 2 0.0787 bagging classifiers, weighted fusion, average aggregation, filtering after reranking.
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E-002-018 and NSC96-2622-E-002-002.



1 Introduction

Due to the popularity of content sharing platforms such as YouTube, an increasing number of interesting
videos are easily accessible in our daily life. Despite being able to enjoy various kinds of videos, people usually
find that it is difficult to efficiently retrieve a specific video. Recently, much research has been devoted to
addressing the issue of video indexing and retrieval [1, 2]. Semantic concept detection leads to more effective
results because it can bridge the gap between low-level features and high-level human interpretations [3, 4].
In TRECVID 2007, we make several contributions described below.

Almost all public HLF detection baselines use LIBSVM [5] to train classifiers. However, as a general
machine learning solver, LIBSVM suffers from long training time for HLF detection. We extend LIBSVM
in three aspects specifically tailored for HLF detection. The total time is reduced from 14 days to about 3
days. The shorter training time thus allows us to experiment with various settings. Moreover, most public
baselines only provide data (low-level features) and models (SVM parameters), but not tools, preventing
them from being applied to new datasets. To address this problem, we will release our toolkit including the
tailored LIBSVM and low-level feature extractors, which should facilitate experiments for large-scale concept
detection.

Past dataset with annotations and trained classifiers are precious since they either require a tremendous
manual effort or a huge learning time. In addition, they are potentially useful for a new dataset. To exploit the
existent HLF detectors from prior data domains (e.g. , TV05-06), we average their output scores with those
from newly trained classifiers. We observe that the video contents from the two sources are quite diverse.
Therefore, concept-dependent aggregative weights are learned from a held-out set. Evaluation on TRECVID
2007 shows that the weighted combination with prior models learned from TV05 development set help TV07
detectors averagely improve 33% in infMAP .

To exploit contextual relationship among concepts and temporal dependency among shots, we propose
post-processing approaches – concept reranking and temporal filtering. Motivated by observation that con-
cepts usually co-occur in a shot. We learn occurrences by exploring contextual relationships among hundreds
of concepts from Columbia374 [6] to improve accuracy. We investigated reranking methods to automatically
model the contextual relationships from the initial detection results and rerank them accordingly. Because
video is temporally correlated and a concept usually spans multiple shots, detection results from neighboring
shots are helpful for the current shot. We proposed temporal filtering to explore this. The proposed post-
processing approaches require neither separate training data nor additional learning processes; moreover,
they are universally applicable to any detection results. Salient improvements are observed in contextually
and temporally related concepts, e.g. Charts(45%), Boat Ship(29%) by reranking and Weather(37%), An-
imal(17%) by filtering. Furthermore, both methods compensate each other and their parallel combination
gains 10.1% improvements in infMAP .

2 A Toolkit for Semantic Concept Detection

There are several public HLF detection baselines for TRECVID benchmark [7], such as the MediaMill Chal-
lenge Problem [8], Columbia374 [6], and VIREO-374 [9]. All use LIBSVM [5] to train SVM classifiers. How-
ever, LIBSVM is designed for generic classification problems and thus suffers from long training time for
HLF detection. To improve the efficiency, we extend LIBSVM in three aspects specifically tailored for HLF
detection.



First, the main computational bottleneck of LIBSVM is on the inner products between sparse feature
vectors. Since feature vectors for HLF detection are usually dense, we modify LIBSVM to calculate dense
inner products. The new code reduces the computational time to around half.

Second, past research results indicate that SVM is sometimes sensitive to parameters. Using cross-
validation, LIBSVM provides a tool to search parameters in a grid space. This code can be easily parallelized
as independent SVMs (i.e. , SVMs with various parameters) can be run on different computers. However,
sometimes jobs of certain parameters are longer than others. Hence, the speedup of parallelization is poor.
Now for the HLF detection, assume the the system attempts to detect M concepts. If N feature-type are con-
sidered, the system requires M×N SVM models. Hence, M×N parameter-selection procedures are needed.
As all of them are independent, we can combine all tasks together to obtain better parallelism. The LIBSVM
parameter selection tool is modified to achieve this goal. Our CPU utilization is roughly increased from 75%
to more than 90%.

Finally, the default search range of LIBSVM parameters is too large. Checking a smaller range already
gives a reasonable SVM model. Hence, we narrow down our search space from the default 110 points to 42
points.

Overall, these adaptations cut the training time approximately from 14 days to about 3 days. With such
improvements, it becomes more feasible to try variant experiments.

3 Semantic Concept Detection

3.1 Low-level Features

We adopt the six visual features of video descriptors used in IBM Research TRECVID-2005 Video Retrieval
System [10]. These low-level features, including Color Histogram (HSV space, 166 dimensions), Color Correlo-
gram (HSV space, 166 dimensions), Color Moments (Lab space, 225 dimensions), Co-occurrence Texture (96
dimensions), Wavelet Texture Grid (108 dimensions), and Edge Histogram Layout (320 dimensions), are
extracted from each keyframe as the visual representations.

To avoid that some large feature values dominate the classification, we adjust the values of each single
feature to about the same range[6]. This is done by normalizing each feature to have zero-valued mean and
unit standard deviation.

3.2 Concept Modeling via Training SVMs

As described in Section 2, we develop a toolkit based on LIBSVM for fast learning HLF detectors. For most
concepts in TRECVID benchmark data sets, the resulting classification problems are highly unbalanced. That
is, there are a lot more negative samples than positive ones. To avoid that the SVM model predicts everything
as negative, it is important to consider only a subset of negative samples. We follow Columbia374 [6] to use
all positive samples and around 20% negative samples. We further refine this sampling procedure by similar
settings in [6]. The computational time is also reduced due to a smaller training set.

Since SVM parameters may influence the performance of classifiers, we mentioned in Section 2 that the
grid-selection tool of LIBSVM is used. This tool is designed to obtain the best classification accuracy, but
for HLF detection, the average precision (AP) [10] is used as the performance metric. We thus modify the
parameter selection tool so that parameters achieving higher cross validation AP are chosen.



3.3 Ensemble Bagging Classifiers

Bagging is a common machine learning technique for combining classifiers [11]. It may help to obtain more
stable results. Moreover, since we now select only a subset of negative samples for training, it is possible to
train models with different subsets and then use them together. In our procedure, the output of 20 classifiers
are averaged to give final predictions. Preliminary experiments indicate that this bagging procedure slightly
improves the performance.

3.4 Multi-Modal Fusion

Many early TRECVID experiments report better results using multi-modal fusion. That is, results of using
different feature types are combined. Basically there are two types of fusion: early and late fusions [12]. Early
fusion is the concatenation of multiple features into a higher dimensional feature vector. One than trains a new
SVM model. On the other hand, late fusion is the combination of separate output scores. In Tseng et al. [13],
late fusion is shown to work better than early fusion. We thus experimente with two approaches for late
fusion:
Average Fusion. For each feature type, we average SVM decision values from the multiple classifiers of the
bagging procedure. We then use a standard Sigmoid function [6] to convert the score into the range of [0, 1].
Then six values from six feature types are averaged with equal weights for the final prediction.
Weighted Fusion. The six visual features may not be equally important for all concepts. Therefore, when
averaging the six transformed values for the final prediction, we impose different weights to combine them.
Their weights are proportional to the best cross-validation AP from the parameter-search stage.

3.5 Aggregation of Past Detectors

Past data sets with annotations are potentially useful for a new classification task. There are two possible
methods to exploit these previous resources. One is the early aggregation in which all examples from different
datasets are combined to train a new classifier. This may causes considerable training time due to the large
data size. The other one is late aggregation, where classifiers trained on past data are directly used to predict
new data. Thus, the prediction scores are combined with those from new classifiers. Similar to multi-modal
fusion, we try two ways to aggregate the results of past classifiers.
Equally Average Aggregation. We simply average scores of past and newly trained classifiers.
Concept-dependent Weighted Aggregation. We observe that the video contents from the two sources
are quite distinct. Therefore, old and new classifiers may not be equally useful for the same concept. Thus,
concept-dependent aggregative weights are found via a hold-out validation. Different weigts are then applied
to aggregate classifiers.

4 Post-processing Framework

4.1 Overview

We exploit post-processing techniques to incorporate context knowledge (both inter-concept and inter-shot)
to further improve the accuracy of semantic concept detection in video. Figure 1 shows our post-processing
framework for HLF detection using concept reranking and temporal filtering. During the training phase,
concept reranking captures the inter-concept relationships in concept lexicon while temporal filtering models
the temporal dependency among multiple neighboring shots. The inter-concept contextual relationships are
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Fig. 1. Post-processing framework for HLF detection in video using concept reranking and temporal filtering.

mined in existent classification results, e.g. Columbia374 [6], and the temporal dependencies are discovered
from manual shot annotations without any extra training data. At the detection stage, given only the detection
results for shots, our ad-hoc post-processing framework uses the learned contextual relationships and temporal
dependencies to rerank and filter the test shots. After that, the scores from concept reranking and temporal
filtering are combined to give the final ranking for shots.

4.2 Concept reranking

To improve the concept detection results, we exploit contextual information among hundreds of pre-trained
concept detectors in a reranking framework, where we investigate variants of reranking methods to automat-
ically learn the contextual relationships from the initial concept detection results and then further rerank
them. We adopted discriminative reranking (e.g. , ListNet, RankSVM, etc.) since we found them more ef-
fective than similarity- or frequency-based ranking methods in mining the ordinal relationship. Besides, such
reranking methods are ease of the ad-hoc thresholding for noisy binary labels and require no extra off-line
learning processes or training data. We also propose several efficient feature selection methods to select
effective contextual concepts for reranking each concept.

4.3 Temporal filtering

Videos exhibit temporal continuity in both visual content and semantics. Since the temporal dependency
varies a lot among concepts, the temporal neighborhood distance of concepts and the temporal dependency
of shots at different temporal distances should be considered. Firstly, as suggested by Liu et al. [14], the
chi-square test with confidence level at 99.9% is used to determine the temporal distance (the size of depen-
dency window) and we also set a maximal temporal distance at 20. Secondly, we try four different statistical
measurements, including chi-square test, likelihood ratio, mutual information and pointwise mutual infor-
mation [14] to determine a set of distance-dependent weighting coefficients. After another cross-validation
on the TRECVID 2007 development data set, we decide to adopt chi-square test to measure the temporal
dependency at each temporal distance and take its values as weighting coefficients.

To exploit temporal coherence, a temporal filter is designed to “smooth” the prediction of a shot with
respect to a concept by a weighted combination of the inference values [14] of the shots within dependency
window. The inference value infers the prediction value for a shot by using prior probabilities and the



likelihood of its neighboring shots. Thus, the inference value of a shot st−k for the current shot st, where
st−k is k shots apart from st, can be defined as follows:

P (lt =1|xt−k) = P (lt =1|lt−k =1)P (lt−k =1|xt−k) + P (lt =1|lt−k =0)(1−P (lt−k =1|xt−k)),

where xt−k is the visual features extracted from the shot st−k, P (lt =1|xt−k) is the probability of current shot
st containing concept l given the features xt−k of neighboring shot st−k, P (lt =1|lt−k =1) and P (lt =1|lt−k =0)
are prior probabilities estimated from the annotations, and P (lt−k = 1|xt−k) is the prediction value given
by the detector indicating how likely concept l is present in shot st−k. For more details, please refer to
Liu et al. [14].

4.4 Combination

Since concept reranking and temporal filtering can compensate each other, we perform parallel combination of
both techniques. At first, concept reranking and temporal filtering are separately applied to classifier’s results.
Next, the scores of both methods are normalized to have zero-valued mean and unit standard deviation. The
normalized scores are then averaged to give the final score. In addition to parallel combination, another
combination can be adopted by applying temporal filtering on the results of concept reranking.

5 Experimental Results

5.1 Performance of Our Baseline.

We use 20% negative samples to train a classifier when concepts’ annotations are highly unbalanced. Addi-
tionally, 20 bagging classifiers are used to form an ensemble classifier so that approximately 99.9% of negative
examples could be sampled at least once. Our baseline A nt20Giants 6 is ranked 59th among all 163 sub-
missions for the HLF detection task of TRECVID 2007. When weighted fusion instead of average fusion is
applied to this baseline, the performance is slightly raised from 0.0599 to 0.061 in terms of infMAP , i.e.
roughly 1.84% improvement.

5.2 Past classifiers.

As described in Section 3.5, we use classifiers of past data in two ways, equally average aggregation and
concept-dependent weighted aggregation. Using TRECVID 2005 classifiers, Figure 2 shows that both meth-
ods of aggregation improves the performance on TRECVID 2007 data by 21.6% and 30.2% in infMAP ,
respectively. we observe that the classifiers trained by TRECVID 2005 data greatly help the performance of
some concepts, e.g. , Desert, Sports, Maps, and Computer TV-screen.

5.3 Post-processing techniques.

In Figure 3, we observe that improvements of concept reranking and temporal filtering on infMAPvary
from 0.5 to 5.5% and from 3.0% to 3.8%, respectively. Though the improvements seem small, the parallel
combination of inter-concept concept reranking and inter-shot temporal filtering can compensate each other.
This combination further boosts the improvement to around 10.1% to 14.4% for different reference settings.
Generally speaking, concept reranking, temporal filtering, and especially the combination of both techniques
are quite helpful for HLF detection.
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Fig. 2. Performance improvement from aggregating classifiers of past data.
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6 Conclusion

For HLF detection, we extend LIBSVM to improve efficiency of training SVM classifiers in three aspects. They
are using dense representations of feature vector, parallelism between independent concepts, features, and
SVM parameters, and narrowing down the search range of SVM parameters. Moreover, we use late aggregation
to exploit the TRECVID 2005 classifiers by equally average aggregation and concept-dependent weighted
aggregation. Evaluation on TRECVID 2007 shows that both of them help TV07 classifiers improve achieve
much improvement. Besides, we propose post-processing approaches to enhance accuracy of semantic concept
detection. Salient improvements are observed in contextually and temporally related concepts. Furthermore,
the combination of concept reranking and temporal filtering gains improvements for HLF detection.
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