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Abstract
The Oxford team participated in the high-level feature ex-
traction and interactive search tasks. A vision only approach
was used for both tasks, with no use of the text or audio in-
formation.

For the high-level feature extraction task, we used two dif-
ferent approaches, both based on sparse visual features. One
used a standard bag-of-words representation, while the other
additionally used a lower-dimensional “topic”-based repre-
sentation generated by Latent Dirichlet Allocation (LDA).
For both methods, we trained χ2-based SVM classifiers
for all high-level features using publicly available annota-
tions [3].

In addition, for certain features, we took a more targeted
approach. Features based on human actions, such as “Walk-
ing/Running” and “People Marching”, were answered by us-
ing a robust pedestrian detector on every frame, coupled with
an action classifier targeted to each feature to give high-
precision results. For “Face” and “Person”, we used a real-
time face detector and pedestrian detector, and for “Car” and
“Truck”, we used a classifier which localized the vehicle in
each image, trained on an external set of images of side and
front views.

We submitted 6 different runs. OXVGG_1(0.073 mAP)
was our best run, which used a fusion of our LDA and
bag-of-words results for most features, but favored our
specific methods for features where these were available.
OXVGG_2(0.062 mAP) and OXVGG_3(0.060 mAP) were
variations on this first run, using different parameter set-
tings. OXVGG_4(0.060 mAP) used LDA for all features and
OXVGG_5(0.059 mAP) used bag-of-words for all features.
OXVGG_6(0.066 mAP) was a variation of our first run. We
came first in “Mountain” and were in the top five for “Stu-
dio”, “Car”, “Truck” and “Explosion/Fire”. Our main obser-
vation this year is that we can boost retrieval performance by
using tailored approaches for specific concepts.

For the interactive search task, we coupled the results
generated during the high-level task with methods to facili-
tate efficient and productive interactive search. Our system

allowed for several “expansion” methods based on differ-
ent image representations. The main differences between
this year’s system and last year’s was the availability of
many more expansion methods and a “temporal zoom” fa-
cility which proved invaluable to answering the many ac-
tion queries in this year’s task. We submitted just one run,
I_C_2_VGG_I_1_1, which came second overall with an
mAP of 0.328, and came first in 5 queries.

1 High-level Feature Extraction
For the high-level feature task, we used two generic meth-
ods which were run for all topics and used more specialized
methods for particular topics. These results were then fused
to create the final submission.

1.1 Generic Approaches
For the following approaches, we used a reduced subset of
MPEG i-frames from each shot, found by clustering i-frames
within a shot. Our approach here was to train an SVM for the
concept in question, then score all frames in the test set using
their distance from the discriminating hyper-plane. We then
subsequently ranked the test shots by the maximum score
over the reduced i-frames. We have developed two different
methods for this task, each differing only in their representa-
tions. The first uses a standard bag-of-words representation
and the second concatenates this bag-of-words representation
with a topic-based LDA representation.

1.1.1 Bag of visual word representation

The first method uses a bag of (visual) words [29] represen-
tation for the frames, where positional relationships between
features are ignored. This representation has proved success-
ful for classifying images according to whether they contain
visual categories (such as cars, horses, etc) by training an
SVM [10]. Here we use the kernel formulation proposed
by [33].



Figure 1: An example of Hessian-Laplace regions used in
the bag of words method. Left: original image; right: sparse
detected regions overlaid as ellipses.

Features and bag of words representation. We used
Hessian Laplace(HL) [21] interest points coupled with a
SIFT [20] descriptor. This combination of detection and de-
scription generates features which are approximately invari-
ant to an affine transformation of the image, see figure 1.
These features are computed for all reduced i-frames. The
“visual vocabulary” is then constructed by running unsuper-
vised K-means clustering over both the training and test data.
The K-means cluster centres define the visual words. We
used a vocabulary size of K = 10, 000 visual words. The
SIFT features in each reduced i-frame are then assigned to
the nearest cluster centre, to give the visual word represen-
tation, and the number of occurrences of each visual word is
recorded in a histogram. This histogram of visual words is
the bag of visual words model for that frame.

Topic-based representation We use the Latent Dirich-
let Allocation [5, 16] model to obtain a low dimensional
representation of the bag-of-visual-words feature vectors.
Similar low dimensional representations have been found
useful in the context of unsupervised [26, 28] and super-
vised [6, 25] object and scene category recognition, and im-
age retrieval [17, 27]. We pool together both TRECVid train-
ing and test data in the form of 10,000 dimensional bag-of-
visual words vectors and learn 20, 50, 100, 500 and 1,000
topic models. The models are fitted using the Gibbs sampler
described in [16].

These representations are concatanated into a single fea-
ture vector, each one independantly normalized, such that
the bag-of-words and the individual topic representations are
each given equal weight. This approach was found to work
best using a validation set taken from the training data.

SVM classification. To predict whether a keyframe from
the test set belongs to a concept, an SVM classifier is trained
for each concept. Specifically, a kernel SVM with χ2 kernel

K(p, q) = e−αχ2(p,q)

where

χ2(p, q) =
N∑

i=1

(pi − qi)2

pi + qi

Figure 2: Four frames from the beginning of a shot, and the
pedestrians detected in them. Every fourth frame is shown.

is used. The parameter α in the kernel function is set to be an
estimate of the average χ2 distance between training images.
We used the SVM-light [18] package.

The positive and negative training examples are obtained
using the collaborative annotation over the 2007 training
data [3]. All shots positively labelled in the annotations plus
a random selection of negative examples were used for train-
ing.

SVM parameters (slack variables plus error weights for
the misclassified positive/negative examples) were deter-
mined using a validation set.

1.2 Feature-specific Approaches

In addition to the generic approaches previously described,
we also used specific, tailored methods for the following
features: “Face”, “Person”, “Walking/Running”, “Car” and
“Truck”. These were found to significantly outperform the
generic approaches on these categories.

1.2.1 Pedestrian Detection

We describe here the approach used to detect pedestrians,
track them over time, and to classify the tracks as either walk-
ing/running or standing.

We start by detecting pedestrians in every frame sepa-
rately, by using the detector of Dalal and Triggs [11]. This
approach slides a window over the image at various locations
and scales and classifies each as either a pedestrian or not.
The classifier is based on the spatial distributions of oriented
gradients. Figure 2 shows detections on three frames from
the beginning of a shot.

At this point, the system is not aware that there are two
persons in the shot, and doesn’t know yet how they evolve
over time. For this purpose, we associate detections over
time using a graph clusterer [15] to maximize the temporal
continuity of the detected bounding-boxes. Each of the re-
sulting tracks links detections of a different person, as shown
in figure 3.

Once we have obtained the person tracks, we want to
determine whether the person is walking/running or simply
standing still. We have devised two cues for this task. The
first cue primes tracks lasting for many frames, and includ-



Figure 3: The detections for the frames of figure 2, associated
over time.

Figure 4: A longer view on the tracks of figure 3. Shown
frames 1,10,20, and 30.

ing high-scored detections. The primary effect of this cue is
to weed out false-positive tracks, not corresponding to a per-
son. Figure 4 shows a longer, 30-frame interval of the shot
in figure 3. The score of a detection is assigned by the initial
detector [11] and is displayed on the top-right corner.

In many shots the camera tracks a walking person, making
it appear static. In other shots, a static person appears moving
due to camera motion. Hence, absolute displacement in the
image plane is not a reliable cue for walking/running. We
devised a better cue, which checks whether the pixel patch
inside the detection bounding-box changes over time. This
appearance cue effectively spots static pedestrians. In more
detail, we describe the appearance of a detection with the
spatial colour histograms of [7] and compute change as their
variance over the duration of the track. Figure 5 illustrates
this idea on a close-up over a track from figure 4.

1.2.2 Face Detection

This section describes our face detection approach (for de-
tails see [1] which presents a real-time version of the soft-

Figure 5: Close-up on one of the tracks of figure 4. The mov-
ing legs causes changes in the appearance descriptor over
time. This cues indicates that the person is walking/running.
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Figure 6: Face precision-recall curve for the highest ranked
2000 shots in the training dataset. The area under the curve
(AUC) score for this curve is 0.9903

(a) Face detection (b) Training samples

Figure 7: Training the regressor from face detections.
Given a set of input faces from the face detector, (a), a set of
192 training pairs (b) are artificially sampled over the state-
space of face poses for training.

ware described below). The aim here is to find video footage
of people where their face is visible with a low false positive
rate. The same processing pipeline is applied to all frames
of the training data and test data. In the training data, a very
high precision (99%) was achieved for low recalls (first 2000
shots). See figure 6 for details.

Face detection and tracking. The first stage of process-
ing is frontal face detection which is done using the Viola-
Jones cascaded face detector [31]. When a new individual
has been detected, a kernel-based regressor is trained to track
that individual such that the tracking performance is both fast
and more robust to non-frontal faces in comparison to cas-
caded face detection [32]. Face detection is used to collect
several exemplars of an individual’s face which may vary
in pose and expression. A training set consisting of image
patches that are offset from the face center and at a slightly
different scale, and the respective transformations back to
the original face location and scale, are artificially generated
from the face detections (see figure 7). This dataset is used to
train a kernel-based regressor to estimate the position (x, y)
and scale (w) of a face.

Feature localization. The output of the face tracker gives
an approximate location and scale of the face, but does not
provide a confidence in this measure. To achieve a low false
positive rate, features at the corners of the eyes, nose and
mouth are located to verify the existence of a face. Where
multiple successive frames achieve a poor localization confi-
dence, the track is terminated.

To locate the features, a model combining a generative



Figure 8: Face track with localized facial features. Tracking
and feature localisation performs well even with changes of
pose and expression.

model of the feature positions with a discriminative model of
the feature appearance is applied. The probability distribu-
tion over the joint position of the features is modelled using
a mixture of Gaussian trees, a Gaussian mixture model in
which the covariance of each component is restricted to form
a tree structure with each variable dependent on a single “par-
ent” variable. This model is an extension of the single tree
proposed in [14], and further details can be found in [13, 12].
Figure 8 shows a face track with the respective feature local-
ization, showing that the features can be located with high
reliability despite variability in pose, lighting and facial ex-
pressions.

Ranking face shots. The output of the face tracking sys-
tem is a set of face tracks for each shot that include the lo-
cation (x, y), scale (w) and confidence (c) of the face at each
frame in the track. This information is combined to get a
score (s) for each shot

si =
1

NT

∑
t∈T

∑
f∈Ft

cfwf . (1)

where T is the set of tracks in shot i which have had all faces
with a low confidence cf removed and are at least 15 frames
long, Ft is the set of faces in track t, wf is the width of the
face f and NT is the number of tracks in shot i.

1.2.3 The Exemplar Model for Cars/Trucks

The model for each class consists of a set of exemplars ob-
tained from regions of interest (ROIs) around the object class
instances in the training images. Each exemplar represents
the spatial layout of visual words and edge directions in the
region using a hierarchical spatial histogram. The spatial cor-
respondence between an exemplar and a target image region
can then be assessed by a level-weighted distance [19] be-
tween the histograms representing the exemplar and target.
Figure 10 illustrates this correspondence. Example detec-
tions are shown in figure 9. Implementation details are given
in [9].

Figure 10: An exemplar image and a corresponding class in-
stance in a car side training set. The hierarchical represen-
tation and cost function measure the spatial correspondence
between sparse visual words and dense edge distributions.
Some corresponding visual words and edges are highlighted.

Learning the exemplar model Suppose we know the
model, and wish to detect a class instance in a target image.
This can be done by a search for a ROI in the target image
that matches well with one of the exemplars, i.e. as a min-
imization of the distance between the exemplars and target
region as the target region is varied. We define the following
cost function to measure this similarity:

C
D

=
∑
X

(d(Xw, Y w))+α (d(Xe, Y e))+β
(A−µ)2

σ2
(2)

where Xw and Xe are the hierarchical spatial histograms of
visual words and edge directions, respectively, in the exem-
plars, and Y is similarly defined for the target image ROI.
The sum is over the set of exemplars X of the model. A is
the aspect ratio of the target region, µ and σ are the aspect ra-
tio average and variance, respectively, of the exemplar ROIs.
The cost C

D
is a weighted sum of three terms: the pair wise

distance between the visual words of the target region and
exemplar, the pair wise distance between the edge directions
of the target region and exemplar, and a cost for the aspect
ratio of the target region deviating from the average aspect
ratio. The distance function used is defined below.

The detection problem involves finding the target region
that minimizes C

D
. Examples are shown in figure 9We now

turn to learning the exemplar set model from training images.
Suppose we are given a set T of N training images, we wish
to find the region in each training image which best matches
with regions in the other training images. These regions will
define the exemplar set. This is equivalent to the detection
problem above, where now we must learn the regions in all
images simultaneously. The cost function is then a sum of
distances between all pairs of training examples

C
L

=
∑
X∈T

∑
Y ∈T

(d(Xw, Y w))+ α (d(Xe, Y e))+ β
(A−µ)2

σ2

(3)
and we wish to find the region in each training image such
that C

L
is minimized.



Figure 9: Top ten car results from the test set, showing the cars correctly detected and localized.

Thus, learning the model involves: (i) automatical loca-
tion of the exemplar regions from the training set; and (ii)
selecting the value of the parameters α, β and learning the
parameters µ and σ.

Distance functions. It is well known that distances may be
strongly corrupted by the presence of an outlier, i.e. in this
case an example image not containing an instance of a cat-
egory object, or a missed detection. Instead of histogram
intersection we use a (squared) χ2 distance since then a sin-
gle training image has a limited influence on the model. This
follows from the fact that the cost function (3) is additive and
the contribution of each exemplar is bounded by a constant.
So,

d(x, y) = (χ2(x, y))2

. In our experiments, the sum of squared χ2 distances out-
performed the sum of χ2 distances as well as the Jensen-
Shannon divergence.

1.3 Merging lists
To fuse the ranked lists, generated using the different meth-
ods, we used a weighted Borda count method [2], which as-
signs votes to each candidate depending on its rank in the
list. These votes are then accumulated over each list to fuse
and the final rank is generated by sorting the candidates in
non-increasing order over a weighted sum of the votes, where
the weights quantify some measure of relative confidence be-
tween the multiple sources. The weightings for each concept
are determined from a validation set, taken from the training
data.

2 Interactive Search
For interactive search, we use the ranked results obtained
from the high-level feature detection task coupled with some

external images, such as those supplied by NIST for each
query or images found from Google Image Search. These
external images are indexed in real-time and this allows us
to use a number of different expansion-search algorithms to
harvest new shots similar to any i-frame in the database or
an external image. Taken together with an extremely high-
speed, efficient interface, this allows us to answer queries
quickly and with high precision. This year, we came sec-
ond with an mAP score of 0.328. We compare our score to
other teams in figure 11.

Our expansion-search algorithms allow us to search for
images with the same object (particular object search), sim-
ilar textural layout (bag-of-words, spatial bag-of-words and
LDA), similar colour layout (spatial colour histograms) or
which are nearly identical (near-duplicates).

2.1 Particular object search
Some of the queries for TRECVid this year can be partially
answered by using real-time, human selected object search
over the corpus. For example, searching for the distinctive
pattern of piano keys in answering the query “Find shots
of one or more people playing musical instruments such as
drums, guitar, flute, keyboard, piano, etc.” allows us to find
more shots containing pianos.

Here we describe an implementation of the “Video
Google” approach [29, 24, 8] for the TRECVid corpus. The
aim is to retrieve shots containing a specific object despite
changes in scale, viewpoint and illumination. The visual
query is specified at runtime by outlining the object in an
example image.

For the visual features, we use Hessian-Affine [22] re-
gions, which are invariant to changes in object illumina-
tion, scale, rotation and viewpoint. We then use SIFT de-
scriptors [20] to describe each elliptical region in the image.
The SIFT descriptors for these appearance regions are vector
quantized into visual words, to give us a visual words repre-



Figure 11: Ranked list of all TRECVid runs for interactive search, with our single submission marked in red.

sentation for each i-frame. With this representation, standard
efficient text retrieval methods [4] can be employed to enable
object retrieval in a Google-like manner.

The vector quantization is carried out using an approxi-
mate K-means method [24] which allows us to use very large,
highly discriminative visual vocabularies. For the interactive
search task, the user was able to search using vocabularies of
size K = 10, 000, K = 100, 000 and K = 1, 000, 000. This
search was coupled with a fast spatial re-ranking method [24]
to improve retrieval quality.

2.2 (Spatial) texture and colour search

Texture-like search expansion was performed by pre-
computing the 20 most similar i-frames to each reduced i-
frame in the corpus using the bag-of-words representation
from the concept task with a χ2 distance measure. The user
also had access to a spatial texture expansion method, which
used a spatial pyramid based bag-of-words representation to
return images with similar structure [19]. We re-used our
topic-based representation based on LDA, to provide the user
with a third expansion method.

We also implemented a global gradient orientation de-
scriptor similar to SIFT [20] to give more varied texture re-
sults for images.

For our colour expansion method we used a very fast spa-
tial colour histogram, used with success in our entry from last
year [23], with an L2 distance for measuring similarity.

2.3 Near duplicate detection

We also allowed the user to find near-duplicate scenes to
any i-frame in the corpus using a method described in [7].
This used a bag-of-words representation coupled with a min-
hash search algorithm to quickly compute an approximate set
overlap score.

2.4 User Interface
In designing a successful user-interface for TRECVid it is
important to specify which goals such an interface should
meet. The system must make it easy for a user to combine
the many different streams of data in an efficient and intuitive
manner. In our case, the main data sources were:

1. Bag-of-words concept rankings.

2. LDA concept rankings.

3. Specific “People Walking/Running” rankings.

4. Face detections.

5. Pedestrian detections.

6. Particular object expansions.

7. Texture expansions.

8. Colour expansions.

9. Near-duplicate detections.

Inspired by the CrossBrowser approach [30], the main in-
terface view contains two axes (see figure 17). The x-axis
represents the temporal ordering of the shots in the corpus
and enables the user to move backwards and forwards in
time. The y-axis displays the rank ordering for the currently
loaded list. There is often a high level of temporal coherency
between subsequent shots and exploiting this is crucial to
good interactive performance. Frequently, in searching for-
wards and backwards from one relevant shot, the user would
find more shots relevant to the query.

A difference from last year’s interface was a “temporal
zoom” facility which allowed the user to specify the temporal
granularity. Set to the finest level, the interface allowed the
user to do video “scrubbing” with the mouse, which proved
vital for answering the many action queries in this year’s
competition. Additionally, every shot on the screen could be



Figure 12: BOW expansion on “text”. The query image is labelled 1, with the top 14 results shown.

Figure 13: Spatial BOW expansion on “airplane”.

Figure 14: LDA (topic-based) expansion on “waterfront”.

Figure 15: Colour expansion on “mountain”.

Figure 16: Texture expansion on “crowd”.



played at high speed simultaneously. Surprisingly, it seems
quite easy to spot particular actions whilst viewing multiple
videos.

The interface allows for rapid access to the data sources
mentioned in the following ways. Any of the pre-generated
results can be loaded into one of ten “live” lists in the sys-
tem. Lists can then be appended, trimmed or fused at will to
give the user a list which can be labelled (as correct or not for
the topic). Once some good examples have been found, the
user can then use any of the expansion methods to “grow”
the positive examples. Additionally, this year, we incorpo-
rated external image search into the system. This allows the
user to drag and drop new images into the interface which
can then be run through the various expansion methods to
generate extra results. We found that using the external im-
ages provided by NIST for each query gave some good initial
results. We also used Google Images as a source of external
images for example in the “Find shots with sheep or goats”
query.
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