
TokyoTech’s TRECVID2007 Notebook

Taichi Nakamura, Koichi Shinoda and Sadaoki Furui
Department of Computer Science, Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 Japan
nakamura@ks.cs.titech.ac.jp {shinoda,furui}@cs.titech.ac.jp

In this notebook we describe our TRECVID 2007 experiments. We TokyoTech team participated in
high-level the feature extraction task.

1 Summary

For the high-level feature extraction task, we use visual features (visual words of keyframe images and
motion features), and do not use any audio information. Maximum entropy models [1] are employed to
model these visual features.

Because there was a material mistake in our submission, the inferred Average Precisions of our runs
was almost zero. Therefore, in this notebook, we also show the results evaluated by ourselves with the
truth judgments file (qrels file).

Figure 1 briefly shows our visual feature extraction process. From each keyframe, we first extract Affine
regions, then describe each of the regions with a SIFT descriptor. We quantize the SIFT descriptor using
a tree-cluster codebook. We call this quantized descriptor “visual word”. In addition to the visual word
itself, we combine the visual word and motion information of the corresponding Affine region to get a
“motion feature”. Finally, we use the number of occurrences of the visual words and the motion features
to construct a feature vector for a maximum entropy model.

2 Tree cluster codebook

2.1 Region extraction

We use a sparse image representation [2] based on affine-invariant regions. Affine-invariant regions are
detected by Harris-Affine and Hessian-Affine detectors. We use the implementation of Visual Geometry
Group [4] with its default parameters. We extracted 20,747,632 Harris-Affine regions and 18,516,464
Hessian-Affine regions from the TRECVID 2005 development set.

2.2 Visual words

Each of the extracted regions is first described with a 128 dimensional SIFT descriptor (4x4-grid, 8-
orientation). This descriptor is then quantized with tree-cluster codebooks constructed in advance from
a training data set. We try two kinds of codebook sets, one is a codebook shared among all high-level
features, and the other is a set of codebooks constructed for each high-level feature. Finally, for each
keyframe, we count occurrences of each visual word, and use the count numbers to build a feature vector.
We will explain the construction process of tree-cluster codebooks and the quantization process (shown
in Figure 2) in more detail.

A tree-cluster codebook is constructed by recursively clustering the SIFT descriptors using the K-
means clustering method (we used K=2). This is done as follows: we first divide all the descriptors into
2 clusters, then we divide the cluster members of each cluster into 2 clusters again, and so on. We stop
dividing a cluster when the number of cluster members falls below a predetermined threshold. We set
the threshold to “number of samples clustered” / “target number of leaf clusters”.



Figure 1: Overview of our visual feature extraction process.

In the quantization process, a SIFT descriptor is repeatedly quantized according to the tree-cluster
codebook, and assigned to one of the leaf clusters. We also assign a descriptor to the parent node of the
leaf cluster to make our visual words hopefully robust in regard to codebook sizes, as shown in Figure 3.

We note that, using tree-clustering, we can reduce the computational cost for quantizing each region
to O(log N) from O(N), which was the case for K-means clustering we used last year (N : Number of
clusters).

3 Motion features

Motion information is important for some high-level features such as car, walking running. We pay
attention to regions where the motion is active, and use a visual word of these regions as a motion feature
(shown in Figure 4).

For each region of a keyframe, we calculate a motion activity value by taking the average of differences
of the region’s pixel values between the neighboring two frames . We then use a predetermined threshold
for a motion activity value to determine whether a motion of the region is active or not. Finally, we
combine the region’s visual word and the activity information by leaving only the visual words where the
motion is active. We call this remaining visual words “motion feature”, and we again use the number of
occurrences as a feature vector.

For the TRECVID 2007 run, we used a threshold of 20.0/255.0, which gave the best performance of
5-fold cross validation using the training dataset.

4 Feature extraction system

For each keyframe image, we concatenate a feature vector of visual words and a feature vector of motion
features to get a feature vector for a classifier. With the feature vectors, we use a maximum entropy
model (MEM) [1] to classify the presence/absence of each high-level feature. A MEM estimates the
posterior distribution of label (presence or absence) given the features of a keyframe image. We use the
implementation of MALLET [3].



Figure 2: Quantization of SIFT descriptors using binary-tree-cluster.

Figure 3: Example of visual words which use parent nodes.

5 Experiments

5.1 Experimental conditions

We used the TRECVID 2005 training data set to train MEMs. The A Tok 1 run was trained on the
complete training set using visual words and motion features. On the other hand, for A Tok 2 run,
we used only visual words. We constructed a codebook for each high-level feature by clustering SIFT
descriptors of keyframe images where the high-level feature was present. When there existed more than
4,000 relevant keyframes, randomly sampled 4,000 keyframes were used. We also constructed a codebook
which is shared among all the high-level features. To construct this codebook, we randomly sampled
10,000 keyframes and clustered their descriptors.

5.2 Results

Because there was a material mistake in our submission, the infAPs of our TRECVID 2007 runs were
almost zero. Therefore, in this notebook, we also show the results evaluated by ourselves with the truth
judgments file. Figure 5 shows the classification performance of our run A tok 1 and re-evaluated run,
together with the median and max performance of all the participants. Most of our performance is below
the median.

We also show the results of three experiments evaluated with the 5-fold cross validation on the
TRECVID 2005 development set. In the first experiment, we examined the performance of the shared



Figure 4: Motion feature.

codebook and the separate codebooks by changing their codebook sizes (Table 1). When a size of a
codebook is small (500, 1000 leaves), separate codebooks perform better. This should be because the
separate codebook is specialized for the corresponding high-level feature. However, with a larger codebook
size (3000 leaves), shared codebooks outperform separate codebooks.

Next, we examined the effectiveness of using the parent node of each leaf node. Table 3 shows
performance when we change the codebook size and nodes of tree-cluster codebook used for feature
vectors. Leaf depth 1 means that only leaves are used for feature vectors, depth 2 means leaves and their
parents are used, depth 3 means leaves, parents, and grandparents are used. We can see that there is no
clear effect of leaf depth. Therefore, it is reasonable to choose the leaf depth for each high-level feature
automatically using the training data.

Next, we examined the effectiveness of the motion features. For this experiment, we used the shared
codebook of 3000 leaves. Figure 2 shows the performance of 39 high-level features using three types of
feature vectors: visual word only (Word), motion feature only (Motion), and both (Word+Motion). The
mean average precision of Word+Motion improved by 0.8% from Word. We can see that Word+Motion
works well with most of the high-level features, but not so well for some high-level features like person
or face. Therefore, like the choice of nodes, it is reasonable to choose the type of feature vectors for each
high-level feature automatically using the training data. Figure 6 shows the performance of four selected
high-level features using the three types of feature vectors. Word+Motion gave the best performance for
all of the four high-level features.

References

[1] A. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra, “A maximum entropy approach to
natural language processing,” Computational Linguistics, Vol. 22(1), pp. 39–71, 1996.

[2] S. Agarwal and D. Roth, “Learning a sparse representation for object detection,” In ECCV,
113130, 2002.

[3] McCallum and Andrew Kachites, “MALLET: A Machine Learning for Language Toolkit”,
http://mallet.cs.umass.edu, 2002.

[4] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky. T. Kadir, and
L. Van Gool, L. “A Comparison of Affine Region Detectors,” In IJCV, 43-72, 2005.



Table 1: Performance of a shared codebook and separate codebooks with different codebook sizes
Shared codebook Separate codebooks

3000 2000 1000 500 3000 2000 1000 500
sports 0.242 0.186 0.136 0.166 0.222 0.219 0.212 0.134
entertainment 0.224 0.280 0.282 0.261 0.211 0.266 0.290 0.274
weather 0.452 0.425 0.381 0.254 0.400 0.431 0.430 0.364
court 0.065 0.076 0.051 0.025 0.022 0.045 0.061 0.041
office 0.058 0.041 0.019 0.026 0.056 0.029 0.017 0.013
meeting 0.072 0.056 0.060 0.069 0.059 0.050 0.074 0.072
studio 0.560 0.517 0.551 0.559 0.582 0.548 0.569 0.598
outdoor 0.402 0.423 0.414 0.418 0.412 0.427 0.427 0.424
building 0.094 0.092 0.108 0.109 0.067 0.075 0.111 0.110
desert 0.037 0.031 0.029 0.011 0.027 0.018 0.011 0.008
vegetation 0.049 0.034 0.046 0.046 0.039 0.028 0.040 0.038
mountain 0.099 0.095 0.068 0.037 0.076 0.086 0.053 0.000
road 0.085 0.071 0.093 0.094 0.080 0.062 0.082 0.086
sky 0.182 0.197 0.263 0.276 0.165 0.172 0.268 0.286
snow 0.259 0.260 0.224 0.149 0.242 0.265 0.238 0.163
urban 0.082 0.056 0.088 0.096 0.063 0.047 0.085 0.089
waterscape waterfront 0.223 0.170 0.091 0.082 0.215 0.177 0.099 0.000
crowd 0.248 0.306 0.348 0.368 0.225 0.272 0.355 0.364
face 0.800 0.813 0.817 0.788 0.811 0.836 0.840 0.826
person 0.865 0.870 0.869 0.853 0.873 0.884 0.876 0.869
government leader 0.086 0.067 0.103 0.085 0.103 0.081 0.116 0.103
corporate leader 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
police security 0.044 0.038 0.005 0.007 0.046 0.023 0.010 0.012
military 0.073 0.060 0.073 0.084 0.051 0.046 0.069 0.080
prisoner 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
animal 0.355 0.309 0.167 0.064 0.320 0.312 0.181 0.072
computer tv screen 0.172 0.150 0.144 0.164 0.164 0.156 0.158 0.183
flag us 0.133 0.118 0.089 0.037 0.059 0.088 0.101 0.091
airplane 0.106 0.086 0.066 0.038 0.092 0.092 0.089 0.059
car 0.152 0.111 0.150 0.155 0.134 0.115 0.180 0.160
bus 0.103 0.125 0.081 0.045 0.101 0.101 0.099 0.070
truck 0.117 0.128 0.102 0.052 0.086 0.083 0.070 0.035
boat ship 0.141 0.099 0.086 0.030 0.149 0.158 0.102 0.043
walking running 0.059 0.047 0.065 0.069 0.041 0.039 0.050 0.000
people marching 0.176 0.175 0.135 0.098 0.149 0.133 0.109 0.050
explosion fire 0.043 0.037 0.036 0.015 0.027 0.031 0.020 0.009
natural disaster 0.150 0.150 0.203 0.134 0.175 0.175 0.189 0.120
maps 0.281 0.259 0.196 0.144 0.197 0.212 0.205 0.153
charts 0.480 0.467 0.472 0.453 0.483 0.475 0.476 0.375
Mean Average Precision 0.210 0.201 0.192 0.172 0.195 0.196 0.199 0.187



Table 2: Performance of the 39 high-level features using three types of feature vectors: visual word only
(Word), motion feature only (Motion), and both (Word+Motion).

Word Motion Word+Motion
sports 0.242 0.086 0.266
entertainment 0.224 0.108 0.246
weather 0.452 0.043 0.451
court 0.065 0.004 0.068
office 0.058 0.016 0.070
meeting 0.072 0.006 0.102
studio 0.560 0.125 0.607
outdoor 0.402 0.274 0.369
building 0.094 0.028 0.099
desert 0.037 0.003 0.038
vegetation 0.049 0.014 0.064
mountain 0.099 0.012 0.107
road 0.085 0.043 0.112
sky 0.182 0.059 0.221
snow 0.259 0.124 0.276
urban 0.082 0.016 0.101
waterscape waterfront 0.223 0.061 0.245
crowd 0.248 0.139 0.295
face 0.800 0.445 0.747
person 0.865 0.645 0.809
government leader 0.086 0.023 0.104
corporate leader 0.000 0.000 0.000
police security 0.044 0.010 0.037
military 0.073 0.024 0.079
prisoner 0.000 0.000 0.000
animal 0.355 0.102 0.356
computer tv screen 0.172 0.017 0.203
flag us 0.133 0.004 0.122
airplane 0.106 0.043 0.129
car 0.152 0.094 0.207
bus 0.103 0.000 0.105
truck 0.117 0.012 0.132
boat ship 0.141 0.049 0.130
walking running 0.059 0.043 0.070
people marching 0.176 0.052 0.172
explosion fire 0.043 0.009 0.060
natural disaster 0.150 0.053 0.156
maps 0.281 0.001 0.248
charts 0.480 0.141 0.488
MeanAveragePrecision 0.199 0.075 0.207



Figure 5: Performance of our run A tok 1 and re-evaluated run, together with the median and max
performance of all the participants.

leaf depth animal car walking running building
codebook size 1 2 3 1 2 3 1 2 3 1 2 3

3000 0.355 0.323 0.311 0.156 0.147 0.143 0.054 0.052 0.050 0.087 0.071 0.080
2000 0.309 0.272 0.236 0.109 0.109 0.119 0.047 0.041 0.044 0.092 0.092 0.105
1000 0.167 0.150 0.132 0.150 0.158 0.157 0.065 0.067 0.070 0.107 0.108 0.106
500 0.064 0.064 0.067 0.150 0.154 0.141 0.069 0.063 0.062 0.109 0.109 0.104

Table 3: Performance when we change the codebook size, and the nodes of tree-cluster codebook used for
feature vectors. Leaf depth 1 means that only leaves are used for feature vectors, depth 2 means leaves
and parents of leaves are used, and depth 3 means grandparents of leaves are also used.

Figure 6: Performance of four selected high-level features using the three types of feature vectors.
Word+Motion gave the best performance for all of the four high-level features.


