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Preliminaries for Semantic Preliminaries for Semantic 
Concept DetectionConcept Detection
• What are preliminaries for building a semantic 

concept detection system?
–– A lexicon of wellA lexicon of well--defined conceptsdefined concepts
–– Training resourcesTraining resources

• Video data
• Annotations
• Features

–– ToolsTools
• Tagging or labeling tools, (e.g., CMU and IBM tools)
• Feature extractors
• Machine learning tools, (e.g., LIBSVM)
• Semantic concept detection tailored tools
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Semantic ConceptsSemantic Concepts
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Video Data SetsVideo Data Sets
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AnnotationsAnnotations
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Features, Detectors, ScoresFeatures, Detectors, Scores

Scores of TV   Scores of TV   
07 dataset07 dataset

VIREOVIREO--374 374 
detectorsdetectors

•Color moment

•Wavelet texture

•Keypoint feature
VIREO-374

Columbia374 Columbia374 
scores of TV scores of TV 
06/07 dataset06/07 dataset

Columbia 374 Columbia 374 
detectorsdetectors

•EDH

•GBR

•GCM
Columbia374

Scores of TV Scores of TV 
05/06 dataset05/06 dataset

5 sets of 101 5 sets of 101 
classifiersclassifiers

•Visual feature

•Text feature
MediaMill
Baseline

ScoresScoresDetectorsFeatureatures



7

Available ResourcesAvailable Resources

• Concept definition is sufficient 

• Training resources are plentiful

• No feature extractors and tailored tools available

Tailored Tools

Machine Learning Tools

Feature Extractors

Tagging Tools

Tools

Features

Annotations

Video data
Training 

Resources

Well-defined concepts
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The New ChallengesThe New Challenges

• Challenge 1 : Easy and Efficient Tools

–– LL datasets, MM concepts, NN features, imply L*M*NL*M*N
classifiers

– Each classifier has to consider many parameters

–– Time seems very limitedTime seems very limited to validate each parameter 
and to train all classifiers

• Challenge 2: Resource Exploitation or Reuse
– Resources are precious

– Existent resources are potentially usefulpotentially useful for new 
dataset

– Plentiful resources have not been fully utilizednot been fully utilized
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Facing the New ChallengesFacing the New Challenges

• Challenge 1:

– Extended LIBSVM to improve training efficiency

– Developed an efficient and easy-to-use toolkit 
tailored for semantic concept detection

• Challenge 2:

– Reused classifiers of past data to improve 
accuracy by late aggregation

– Exploited contextual relationship and temporal 
dependency from annotations to boost accuracy
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Facing the New ChallengesFacing the New Challenges

• Challenge 1 : Easy and Efficient Tools
– Extended LIBSVM to improve training efficiency
– Developed an efficient and easy-to-use toolkit 

tailored for semantic concept detection

• Challenge 2
– Reused classifiers of past data to improve 

accuracy by late aggregation
– Exploited contextual relationship and temporal 

dependency from annotations to boost accuracy
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A Tailored ToolkitA Tailored Toolkit

• We extended LIBSVM in three aspects for 
semantic concept detection:
– Using dense representations

– Exploiting parallelism of independent concepts, 
features, and SVM model parameters

– Narrowing down parameter search to a safe 
range

• Overall, training time of our baseline was 
approximately reduced from 14 days to about 3 daysfrom 14 days to about 3 days
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Facing the New ChallengesFacing the New Challenges

• Challenge 1 
– Extended LIBSVM to improve training efficiency

– Developed an efficient and easy-to-use toolkit tailored for 
semantic concept detection

• Challenge 2 : Resource Exploitation or Reuse
– Reused classifiers of past data to improve accuracy by 

late aggregation

– Exploited contextual relationship and temporal 
dependency from annotations to boost accuracy



13

Reuse Past DataReuse Past Data

• Early aggregation
–– Must reMust re--train classifiers train classifiers 

–– Cause considerable training timeCause considerable training time

• Late aggregation
–– Simple and directSimple and direct

–– May be biasedMay be biased
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Late AggregationLate Aggregation

• We adopt late aggregation to reuse existent 
classifiers by two strategies:
–– Equally Average AggregationEqually Average Aggregation

• Simply average the scores of past and newly trained 
classifiers

–– ConceptConcept--dependent Weighted Aggregationdependent Weighted Aggregation
• Use concept-dependent weights to aggregate 

classifiers
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Aggregation BenefitsAggregation Benefits
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Facing the New ChallengesFacing the New Challenges

• Challenge 1 
– Extended LIBSVM to improve training efficiency

– Developed an efficient and easy-to-use toolkit tailored for 
semantic concept detection

• Challenge 2: Resource Exploitation or Reuse
– Reused classifiers of past data to improve accuracy by 

late aggregation

– Exploited contextual relationship and temporal 
dependency from annotations to boost accuracy
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Observation in AnnotationsObservation in Annotations

A sequence of video shots

A lexicon
of concepts

car

outdoor

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

building 1 0 0 1 1 1 1 0

sky 0 1 1 1 0 1 1 0

people 0 0 0 1 0 1 1 0

urban 1 1 0 1 1 1 1 1

Contextual relationshipTemporal Dependency
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PostPost--processing Frameworkprocessing Framework
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Temporal FilteringTemporal Filtering
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Temporal DependencyTemporal Dependency

• Different concepts have different levels of  
dependency at different temporal distance
– E.g., sports, weather, maps, explosion sports, weather, maps, explosion 
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Temporal FilterTemporal Filter
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Filtering PredictionFiltering Prediction

• A sequence of shots for predicting sportssports

–– Classifier prediction resultsClassifier prediction results

–– After temporal filteringAfter temporal filtering
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Concept Concept RerankingReranking
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Initial ranking list produced by a baseline method
Target concept: ‘boat’ (search or detection)

Initial list
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training

test

Step 1. Randomly split to training and test sets

Initial list
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training

test

Step 2. Learn to maintain the ranking orders

Initial list

1. Related concepts1. Related concepts
2. Importance of each2. Importance of each

conceptconcept

Related concepts:
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Shot pairs
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training

test

Related concepts:
ocean
waterscape

Step 3. Context fusion on the test data

Initial list
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Reranked
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Step 4. Merge
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CombinationCombination
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PostPost--processing Benefitsprocessing Benefits
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ConclusionConclusion

• We reduce the training time of detectorsreduce the training time of detectors by 
using a tailored toolkit for semantic concept 
detection

• The proposed aggregation methods reuse the reuse the 
classifiersclassifiers of past data and can boost the 
detection accuracy

• Our post-processing approaches exploit exploit 
existent resourceexistent resource and can further improve 
detection results
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Thank You For Your AttentionThank You For Your Attention


