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Preliminaries for Semantic

Concept Detection

 What are preliminaries for building a semantic
concept detection system?

— A lexicon of well-defined concepts

— Training resources
* Video data
e Annotations
* Features

—Tools
» Tagging or labeling tools, (e.g., CMU and IBM tools)
» Feature extractors
« Machine learning tools, (e.g., LIBSVM)
» Semantic concept detection tailored tools




Semantic Concepts
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Annotations
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Available Resources

Well-defined concepts O
Traini Video data O
raining '\ nnotations O
Resources

Features O
Tagging Tools O
Feature Extractors X

Tools ) :
Machine Learning Tools O
Tailored Tools X

» Concept definition is sufficient
« Training resources are plentiful
* No feature extractors and tailored tools available

The New Challenges

 Challenge 1: Easy and Efficient Tools
— L datasets, M concepts, N features, imply L*M*N
classifiers
— Each classifier has to consider many parameters

— Time seems very limited to validate each parameter
and to train all classifiers

 Challenge 2: Resource Exploitation or Reuse
— Resources are precious

— Existent resources are potentially useful for new
dataset

— Plentiful resources have not been fully utilized




Facing the New Challenges

 Challenge 1:
— Extended LIBSVM to improve training efficiency

— Developed an efficient and easy-to-use toolkit
tailored for semantic concept detection

« Challenge 2:

— Reused classifiers of past data to improve
accuracy by late aggregation

— Exploited contextual relationship and temporal
dependency from annotations to boost accuracy

Facing the New Challenges

 Challenge 1 : Easy and Efficient Tools
— Extended LIBSVM to improve training efficiency

— Developed an efficient and easy-to-use toolkit
tailored for semantic concept detection




A Tailored Toolkit

* We extended LIBSVM In three aspects for
semantic concept detection:
— Using dense representations

— Exploiting parallelism of independent concepts,
features, and SVM model parameters

— Narrowing down parameter search to a safe
range

« Qverall, training time of our baseline was
approximately reduced from 14 days to about 3 days

Facing the New Challenges

 Challenge 2 : Resource Exploitation or Reuse

— Reused classifiers of past data to improve accuracy by
late aggregation




Reuse Past Data

e Early aggregation
— Must re-train classifiers
— Cause considerable training time

e Late aggregation
— Simple and direct
— May be biased

Late Aggregation

* We adopt late aggregation to reuse existent
classifiers by two strategies:

— Equally Average Aggregation

« Simply average the scores of past and newly trained
classifiers

— Concept-dependent Weighted Aggregation

» Use concept-dependent weights to aggregate
classifiers
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 Challenge 2: Resource Exploitation or Reuse

— Exploited contextual relationship and temporal
dependency from annotations to boost accuracy




car 1 1 1 1 1 1
outdoor 1 1 1 1 1 1
urban 1 1 0 1 1 1

sky 0 1 1 1 1 0
people 0 0 0 1 1 0
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Temporal Filtering
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Temporal Dependency

 Different concepts have different levels of
dependency at different temporal distance

— E.g., sports, weather, maps, explosion

Chi-square test
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Temporal Filter
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Concept Reranking
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Initial list
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1. Related concepts
2. Importance of each
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Related concepts:
ocean
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Step 4. Merge
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« We reduce the training time of detectors by
using a tailored toolkit for semantic concept
detection

» The proposed aggregation methods reuse the
classifiers of past data and can boost the
detection accuracy

« Our post-processing approaches exploit
existent resource and can further improve
detection results
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