TRECVID Automated and Interactive Search by NUS/ICT

Shi-Yong Neo, Yan-Tao Zheng, Hai-Kiat Goh, Tat-Seng Chua
School of Computing, National University of Singapore

Huanbo Luan, Juan Cao, Qiaoyan He, Sheng Tang, Yongdong Zhang
Institute of Computing Technology, Chinese Academy of Sci.
Overview

- Performed two tasks: Automated search & Interactive search

- Automated search:
 - process text and multimedia query
 - perform retrieval

- Interactive search:
 - Perform flexible relevance feedback, active learning, locality inference
 - Use motion icons (m-icon)
Automated Search
Auto Search Overview

- **Challenge:** *ASR and MT are not good,*
- **Solution:** incorporate multi-modal features to complement text
 - Effective query analysis and retrieval using HLF, motion and visual features.

Framework

- **Step 1:** induce and extract query-information
 - *query-class, query-HLF from the text query;*
 - *Query motion & visual features from available example keyframes/shots*
- **Step 2:** perform retrieval and ranking
Query Analysis

- Analyze queries to learn:
 - Query-class, Query-HLF, Query-image-feature and Query-shot-motion

- **Query-class**
 - Showed to be important functions by many prior works
 - Identified by heuristic rules using combination of noun, noun phrases, verbs, NE, etc
 - Function as a guide to fuse multi-modal features effectively.
 - Determined by a set of firing rules for each class:
 - We exploit {Scene, People, Object, Action, Unknown}.
 - \{Unknown\} class is to accommodate the queries that do not belong to any of the first four classes.
 - Other classes cover 19 out of 24 queries
Query Analysis: Query-HLF

- Query-HLF suggests possible HLFs that are important to the query in terms of visual requirements.
- Employ morphological analysis and selective expansion using WordNet on HLFs descriptions and query.
 - Stronger the match between HLF descriptions and query => the more important the HLF is to the query.
- Infer query-HLF from sample keyframes and shots
 - A sample image containing one of the HLFs could explicitly mean that the particular HLF can be important.
- Combine inference from text query and video shots to obtain a better and more representative query-HLF for query.
Query Analysis: Query-image-feature

- **Query-image-feature** (Q_{IMG}) corresponds to video features extracted from sample keyframes and video shots.

- **Step 1**: extract three visual features from all the sample keyframes
 - A 320-dimensional vector of edge histograms (EH) on 5 regions;
 - A 166-dimensional color histogram (CH) vector in HSV space;
 - A set of visual words (VW) constructed based on 128-dimensional SIFT vector

- **Step 2**: learn three nonparametric LDA models based on above three visual features (CH, EH, VW)
 - Obtain the latent topic distribution of every shot.
Query Analysis: Query-motion features

- A number of query topics are highly associated with motions.
 - For example,
 - Query “finding shots of train in motion” and “find shots in which a boat moves past” tend to present large horizontal translational global motions in the shot,
 - Query “find shots of a road taken from a moving vehicle through the front windshield” tends to present zoom-like diffusing global motions,
 - We use 2 descriptors for global motion patterns
 - 8-dimensional vector of motion directions: up, down, left, right, up-left, up-right, down-left and down-right
 - 1D global motion intensity: still, median, etc
 - The motion cues are extracted from motion vectors stored in p-frames in compressed domain
 - High efficiency: processing around 50-hour testing videos in approximately 40 hours.
Shot Level Retrieval

➢ Fuse the ASR & MT text, Query-HLF, Query-image-feature and Query-shot-motion

\[
\text{Score} (Q, \text{Shot}_j) = \beta_c \cdot \text{Text} (Q, \text{words} \mid \text{words} \in \text{Shot}_j) + \\
\gamma_c \cdot \sum_{\text{HLF}_m \in \text{shot}_j} [\text{Conf} (\text{HLF}_m) \times \text{Sim}_\text{Lex} (Q_{\text{HLF}}, \text{HLF}_m)] + \\
\delta_c \cdot \max_{\text{image}_n \in \text{IMG}} (\text{image}_\text{sim} (\text{image}_n, \text{shot}_j)) + \\
\chi_c \cdot \max_{\text{image}_n \in \text{IMG}} (\text{motion}_\text{sim} (\text{image}_n, \text{shot}_j))
\]
Experimental Results

- Performed 5 runs to progressively evaluate effect of HLF, visual and motion features

- **Run1**: *Required text baseline;
- **Run2**: *Required visual baseline;
- **Run3**: *Fusion without motion using only text query;
- **Run4**: *Fusion with motion using only text query;
- **Run5**: *Fusion with motion using multimedia query;
Experimental Results

- Firstly, the worst performing run (Run1: MAP 0.004) comes from the text baseline.
 - ASR and MT text are not erroneous and thus less predictive than HLF and visual counterparts.
- The visual baseline (Run2: MAP 0.017) in contrast yields much better results.
- Improvements in Run3 and Run4 show that the use of HLF and motion features is effective.
- Run5 (0.061) delivers the highest MAP by multimedia queries.
- Observations:
 - HLFs are one of most important features
 - Motion is effective in certain queries
 - Visual and motion features tend to complement text and HLF features
 - Query content from multimedia counterpart is more discriminating than text alone
Interactive Search
Introduction

- Poor performance of fully auto search
- More intelligent system is demanded
- Solution: interactive search
 - Incorporate user’s feedback to refine the results

- Our emphases for interactive search:
 - Effective UI (User Interface)
 - To maximize user’s annotation speed
 - Multiple feedback strategies
 - To provide multiple refinement options to users
 - Motion icons
 - Design Moving Icons (M-icons) to give info on motion of the shots
Overall Framework

Auto Search Stage

Start

Query

Auto Search

New list of relevant shots

Relevant shots

Interactive Search Stage

Recall-driven

Precision-driven

Re-rank shots in subset

Locality-driven

Neighbor-shots rank list

Strategy Selection

Labeling

Results
Intuitive User Interface

- **UI Design Basis**
 - Fast perception
 - display 3 shots in each row
 - optimum for keystroke action
 - Quick previews of previous & subsequent rank shots
 - Flexible annotation modes
 - manual, semi-auto, auto
 - control flow of shot browsing
 - Query by HLF
 - Retrieval Statistics
 - Self-contained, separated from backend server and Web-enabled
 - *UI developed by Macromedia flash*
Intuitive User Interface

- **UI Design Basis**
 - Fast annotation
 - *keystroke actions, labeling by clicking on keyboard buttons*

- **Efficiency**
 - Approximate 3,500 shots based on motion icons in 15 mins
 - Approximate 5,000 shots based on static icons in 15 mins
Multiple Feedback Strategies I

- **Strategy 1: Recall-directed feedback**
 - Aim: maximize recall performance
 - Extract useful text token and HLF from labeled relevant shots for query expansion
 - Features: text and HLF

- **Strategy 2: Precision-directed feedback**
 - Aim: improve precision of retrieved shots by refining classifier
 - Adaptive sampling strategy for active learning based on SVM
 - Multimodal features: visual, HLF, motion
 - Real time training and classification
Multiple Feedback Strategies II

- **Strategy 3: Semantic coherence (neighborhood inference)**
 - Temporal locality-driven: return neighboring shots of the positive
 - Documentary videos possess high temporal coherency of same topic
 - Neighboring shots tend to be relevant
 - Select neighbors by sliding window
 - **Example:** find shots of street market

![Example images of shots from a street market]
Why Multiple Feedback Strategies?

- More options for users
- More robustness in feedback
- More flexibility for cross-domain annotation
 - For news corpus (TRECV06), recall-driven feedback is effective
 - ASR text is richly available
 - For documentary corpus (TRECV07), neighborhood inference works well
 - Documentary video tends to be of high temporal coherence.
Motion Icons

- **Motivation**
 - Many queries are associated with objects in motion in the video.
 - Static keyframes contain deficient information about video content

- **Our Approach**
 - Construct a summarized clip comprising a sequence of keyframes which can show moving picture information.
 - Motion icon possesses more comprehensive info. than static keyframe
 - Users can have a clearer idea of shot content and identify relevant shots with better confidence
Motion Icons

Example 1: find shots of train in motion

Example 2: find shots of a canal, river, or stream with some of both banks visible
Experiments

- We submitted one run of interactive search
- MAP of 0.251 and 5\(^{th}\) best performing run
- 2 topics achieves highest MAP and 18 out of 20 topics are above median
- 1 query (“Find shots of people and dogs walking”) has no relevant shots found, which lowers overall MAP badly.
Conclusion and Future Work

Focus of Interactive Search

- Efficient UI
- Multiple Feedback Strategies
- M-icon

Future Work

- Can we extend our system to non-expert users?
- Challenges: When to do feedback, which strategy to choose?
- Solution: Recommendation mechanism
 - Analyze experts behavior pattern based on activity log
 - Annotation statistics of non-expert users
Thank You

Q & A