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Abstract

We have developed and evaluated three generalized sys-
tems for event detection. The first system is a simple brute
force search method, where each space-time location in
the video is evaluated by a binary decision rule on whether
it contains the event or not. The second system is build on
top of a head tracker to avoid costly brute force search-
ing. The decision stage is a combination of state of the art
feature extractors and classifiers. Our third system has a
probabilistic framework. From the observations, the pose
of the people are estimated and used to determine the pres-
ence of event. Finally we introduce two ad-hoc methods
that were designed to specifically detect OpposingFlow
and TakePicture events. The results are promising as we
are able to get good results on several event categories,
while for all events we have gained valuable insights and
experience.

1 Introduction

Event detection in uncontrolled environments is critical
to video-based surveillance systems, which is one of the
ultimate goals of vision technologies. The challenges are

mainly on two-fold: the vast diversity of one event viewed
from different view angles, at different scales, and with
different degrees of partial occlusions, and the demand
for efficient processing of huge amount of video data, not
to mention the inherent semantic gap between motion pat-
terns and events. Thus, we strive to extract efficient image
features that are pertinent to events of interests and learn
multiple one-against-all classifiers to grasp the essential
of individual events. As different individuals may have
dramatically different appearances, the most relevant im-
age features of events are those capable of encoding the
shape and motion patterns.

In the following section (2) we discuss our three gen-
eralized approaches for event detection. In contrast to the
ad-hoc approaches we developed for TakePicture and Op-
posingFlow event (see section 3), these general methods
can be trained and used for detection of any pre-defined
action categories. We report the results in terms of Actual
DCR and Minimum DCR scores in section 4 and finally
conclude in section 5.



2 Main Approaches

Data Pre Processing

In addition to the labels provided by NIST, which only
showed starting and ending points of the events, we
recorded the spatial location of several instances of five
selected events (CellToEar, Embrace, Pointing, Object-
Put, PersonRuns) by drawing a bounding box of fixed as-
pect ratio around the person performing the action. We
used this new localized annotation set as our training data
for training most of our algorithms.

2.1 Brute Force Action Search

The first system we consider treats the problem of action
detection as a retrieval problem. The hypothesis space is
kept as large as possible by considering every fixed sized
space-time entity with significant foreground as a candi-
date for one of the action sought after. We exhaustively
search over all possible space-time locations in the video
over a range of scales. From every candidate space-time
window, motion descriptor features are extracted, which
have been shown to have good performance in similar
tasks [4]. Then the distance to every single example in the
database is measured. If there is an action in the database
within the R-neighborhood of the candidate window, we
keep it and it is considered for detection in the next step,
otherwise it is pruned out. The last step in the detection
process is mean shift clustering. This is based on the as-
sumption that, if there is a true instance of an action where
a likely candidate has been found, there will be multi-
ple detections with slight shifts in space and time around
the candidate. Thus, through clustering of the candidate
points we can obtain a more robust action detection pro-
cess. See figure 1 for an overview of our system.

2.1.1 Candidate Region Selection

The evaluation video is exhaustively searched over all
possible scales and locations. In this system the length
of the action in time is fixed to be 30 frames long. This is
consistent with the median length of most events provided
in the annotations, and recently it has been argued [14]
that a short snapshot of an action can be discriminative
enough to distinguish it from everything else. We have

also modelled the spatial scales of actions with respect to
their vertical location in the frame. It can be deduced that
there is a clear linear relationship between the spatial lo-
cations of the actions and their possible sizes. Therefore
when exhaustively searching for the candidate regions, we
only consider scales that were observed in the training set.
We further prune out candidate regions that do not have
enough foreground in them. This is done by estimating
the scene foreground using Zivkovic et al.’s background
subtraction algorithm using improved Gaussian Mixture
Models [17].

2.1.2 Feature Extraction

We have tested several shape and flow descriptors [9, 3, 4]
and have concluded that the generality and performance
(both speed and accuracy) of Efros et al.’s [4] motion de-
scriptor is the most suitable for this task. The feature
extraction process can be described as follows. First the
optical flow between consecutive frames is calculated in
grayscale. In our system we have used Lukas-Kanade
method for estimating the optical flow in horizontal and
vertical directions. The horizontal and vertical channels
are further divided into their respective positive and nega-
tive components, which eventually gives four images (i.e.
1. positive flow in horizontal direction, 2. negative flow
in horizontal direction, 3. positive flow in horizontal di-
rection, 4. negative flow in horizontal direction). These
four images are resized to (7x7) images by linear inter-
polation. We further downsample in time domain, in
which we extract these motion features only at every 6’th
frame. Thus every candidate window eventually yields a
7x 7x (3 +1) x 4 = 1176 dimensional feature vector.

2.1.3 Matching

Each candidate window is compared with examples by
measuring the Euclidean distance between the features
of the current candidate window and the features of the
events in the development set. Note that at this stage met-
ric training can be considered for added accuracy [15].
However we intended this approach to be a baseline sys-
tem, with as little hiuman in the loop training as possi-
ble. Another consideration is while learning strategies are
ultimately very rewarding in detection problems where
the object has very distinct characteristics (e.g. faces),
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Figure 1: The system diagram for event detection by brute force search.

their efficiency in the context of event search is still an
open question due to the large variability in the appear-
ance individual events. After measuring finding the near-
est neighbors, we only keep the candidate windows which
have a neighbor in the development set, whose distance is
less than R. The value of R has been determined in the
training stage such that only about 1% of the candidate
windows would be retained after thresholding.

Finally the remaining candidate regions after threshold-
ing, will be clustered in 3D zyt-space. Our system out-
puts each cluster center with the number of cluster mem-
bers as the confidence measure for event detection. We
have used popular mean shift [2] as the clustering method
of choice. We employed a uniform 3D rectangular kernel
(box kernel) for efficient implementation. Our submis-
sions included three versions of this system each differing
in kernel size. In the results section we report the results
of the best performing kernel which was the smallest one
(10, 10 and 1 in , y and ¢ directions respectively).

2.1.4 Discussion

The results of our brute force searching method serves as
a reliable baseline for more sophisticated approaches. It
is interesting to observe that the simple nearest neighbor
finding can produce competitive results in several cases.

This can be attributed to the strength of the feature de-
scriptor as well as the wide range of variations in event
appearances, where nearest neighbor has a clear advan-
tage due to the fact that there is no explicit or implicit
modeling of event appearances.

2.2 Action Detection with a Tracker

Our second system mainly follows the framework of hy-
pothesis generation, feature extraction, and classification.
The candidate regions are generated based on human de-
tection and tracking which can significantly reduce the so-
lution space. Then, we aim to detect events of two cate-
gories: 1) events that require understanding of the articu-
lated body motion of a single person, such as CellToEar,
ObjectPut, and Pointing; 2) events that can be revealed
by the moving trajectories of a single person, such as Op-
posingFlow and ElevatorNoEntry. For the first category,
we combine three different classification methods based
on bags of interest points and motion features, which
will be elaborated in the following sections. For the sec-
ond category, we apply rule-based classifiers on locations
and trajectories. In the post-processing stage, the frame-
based classification results are linked to event segments
by heuristics. The system diagram is illustrated in Fig. 2.
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Figure 2: The system diagram for human event detection.

2.2.1 Human detection and tracking

We apply a Convolutional Neural Network (CNN) [8]
to detect human heads in an image and than track mul-
tiple human [5] by fusing color and contour informa-
tion [1, 16]. In general, up to 30 candidates regions are
evaluated for each frame. Some typical human detection
and tracking results for different camera views are shown
in Fig. 3.

2.2.2 The combination of three learning methods

Given the human detection and tracking results, to detect
the events that requires understanding of articulated body
motion, i.e., CellToEar, ObjectPut, and Pointing, we com-
bine three machine learning algorithms: a cascaded Ad-
aboost classifier based on motion features, an SVM clas-
sifier based on spatial pyramid matching [7] of a bag of
interest point descriptors [10], and a CNN classifier based
on raw images.

The motion feature extraction for the Adaboost classi-
fier is explained as follows. For consecutive frames, we
first calculate the frame difference images which only re-
tain the motion information, and then we perform Canny
edge detection to make the observations cleaner. The mo-
tion edges are accumulated to a single image with a for-
getting factor. This is a tradeoff between retaining all rel-
evant information and efficient processing. On one hand,
this approach preserves some temporal shape information,
on the other hand, to analyze one image is much com-
putationally cheaper than analyzing spatio-temporal vol-

umes. Afterwards, we extract Haar-like features from the
accumulated motion edge image based on the detected or
tracked human heads and train a cascaded Adaboost clas-
sifier. One example of the feature extraction process is
illustrated in Fig. 4.

The spatial pyramid matching (SPM) [7] of a bag of in-
terest point descriptors demonstrates superb performance
in object and scene categorization due to its power to de-
lineate the local shape patterns. However, the original
spatial pyramid matching feature is extracted from a fig-
ure in a single frame. The occurrence of an event is a tem-
poral process, so it is unable to capture the comprehensive
event character without considering the temporal infor-
mation. Therefore, we improve SPM features by incor-
porating temporal information. As shown in Fig. 5, after
extracting the dense SIFT features [10], we construct the
original SPM features from a single human figure in one
spatial-temporal cube at each frame. The spatial-temporal
cube is defined as the aggregation of the regions in the
successive frames which are along the temporal axis with
the same image coordinates w.r.t the base human figure.
Then, for each cube two statistical features, i.e. the mean
and the difference-power of the SPM features, are calcu-
lated and fed to the SVM learner.

The CNN classifier is trained based on raw images in
a single frame given the human detection and tracking re-
sults.

For each candidate region, the classification confi-
dences of aforementioned three classifiers are linearly
weighted combined. If the combined confidence is larger



Figure 4: Tllustration of the motion feature extraction. From left to right: (a) the original frame, (b) the frame difference
image, (c) Canny edge detection, (d) accumulated motion edge image

Figure 5: Illustration of the improved SPM feature.

than a threshold 7', this frame is regarded as positive. The

2.2.3 The Rule-based method

For the events OpposingFlow and ElevatorNoEntry, the
location and trajectory are sufficient to reveal their occur-
rences. Given the human detection and tracking results,
we train rule-based classifiers utilizing the location, ve-
locity, orientation, and trajectory. The parameters and the
rules are determined by the cross-validation on the devel-
opment set.

2.2.4 Discussion

From the 5-fold cross-validation results on the develop-
ment set, we observe that the false positives rates are still
fairly high. A considerable portion of the false positives
appear similar in terms of the motion patterns, e.g. touch-
ing hair is occasionally misclassified to CellToEar and it
is very hard to distinguish between ObjectPut and Ob-

weights {w1,ws,ws} and the threshold T" are determined jectGet. The majority of the false positive are induced by

by cross-validation on the development set. The frame
based results are linked to generate the event segments by
heuristics considering the spatial and temporal smooth-
ness and consistency.

cluttered background, the occlusions in a crowd, and the
complicated interactions among people.

The combination of three classification methods out-
performs individual ones. However, the combination



weights vary dramatically w.z.¢ different events in differ-
ent cameras, which indicates that the performance and
the generalization ability are not stable. Moreover, the
heuristics in the post-processing stage are not trivial and
also play an important role in determining the final per-
formance.

2.3 Action Detection using Latent Pose
Conditional Random Fields

In our third system, we consider only three events: Cell-
ToEar, ObjectPut, and Pointing. And three kinds of event
classifiers are trained on the development set: CRF (con-
ditional random field) [6], LDCRF (latent dynamic CRF)
[11], and LPCREF (latent pose CRF). CRF and LDCRF are
two existing models and LPCRF is our own work (the de-
tails are given below). More specifically, we first use the
NEC tracker (section 2.2.1) to obtain the motion trajec-
tories for the human in the scenario. Then for each con-
sidered event, we trained three classifiers (CRF, LDCREF,
and LPCRF), using the manually labeled events in the de-
velopment set as positive samples. The negative samples
are randomly selected from tracking trajectories. Then
for each camera and each event, we choose the best clas-
sifier. The best classifiers take the motion trajectories in
the evaluation set as input and decide the occurrences of
the corresponding events.

Fig. 6 gives the graphical structures of three models:
CRF, LDCREF, and LPCRF. Much like a Markov random
field, a CRF is an undirected graphical model in which
each vertex represents a random variable whose distribu-
tion is to be inferred, and each edge represents a depen-
dency between two random variables. In a CREF, the dis-
tribution of each discrete random variable in the graph is
conditioned on an input sequence. The LDCRF model
[11] incorporates hidden state variables into the tradi-
tional CRF to model the sub-structure of human actions,
and combines the strengths of CRFs and HCRFs [13] to
capture both extrinsic dynamics and intrinsic structure.
Interested readers are referred to [0, 11].

2.3.1 The Model

Our latent pose conditional random fields (LPCRF) model
is a generalization of CRF and LDCREF. Fig. 6 illustrates
its graphical structure. The latent pose estimator learns

to convert an observation vector x into a more compact
and informative representation y, and the model recog-
nizes human actions based on the pose sequence ¥ =
{y1,¥2, - ,¥n}. Later we denote the latent pose esti-
mator as P(y|x, ©) in probabilistic form or y = ¥(x, O)
in deterministic form, where O is the set of parameters of
the latent pose estimator and is jointly optimized with the
random fields using a gradient ascent algorithm.

2.3.2 Formulation of Our LPCRF Model

Our model is defined as

P(z|X,Q) = P(z|Y,®) = > P(h|Y,®)
hcH,

ey

where Y = U(X, O) is the optimal estimation of the la-
tent pose estimator given observations X and parameters
0, and Q = {®, O} represents all the model parameters.
The joint distribution over the hidden state sequence h
given Y still has an exponential form

P(h|Y,®) = )

exp (Zj Vo (j, hj, Y) + 325 Eo(j, hj—1, by, Y))
Ko(Y,H) ’

where K¢ (Y, H) is the observation dependent normaliza-
tion.

If the parameters © for the latent pose estimator are
fixed, our LPCRF model collapses into an LDCRF model.
If each class label 2 € Z is constrained to have only
one hidden sub-action, i.e., |[H,| = 1, the LDCRF model
further collapses into a CRF model. Hence, our LPCRF
model is a more general framework of CRF and LDCRF.
However, our LPCRF model is essentially different from
both CRF and LDCREF in some aspects. In our model, in-
put features used by the random fields are trainable and
are jointly optimized with the random fields, while in
CRF and LDCRE, the input features are fixed and cannot
be tuned for the given recognition task. The latent pose
estimator encodes the knowledge of multimodal image-
to-pose relationship and provides optimal feature repre-
sentation for action recognition. This knowledge can be
acquired from existing well-trained models (if available)
and adapted for action recognition in the learning process.



CRF

Figure 6: Graphical structures of our LPCRF model and two existing models: CRF [6] and LDCRF [

LDCRF

LPCRF (our model)

]. In these

models, x is a visual observation, z is the class label (e.g., walking or hand waving) assigned to x , and h represents
a hidden state of human actions (e.g., left-to-right/right-to-left walking). The subscripts index the frame number of
the video sequence. In our LPCRF model, the observation layer of the random fields is replaced with a latent pose
estimator that learns to compress the high dimensional visual features x into a compact representation (like human
pose) vy. Our model also enables transfer learning to utilize the existing knowledge and data on image-to-pose
relationship. The dashed rectangles means that y’s are technically deterministic functions of x when the parameters

of the latent pose estimator are fixed.

In all, the latent pose estimator is seamlessly integrated
and globally optimized with the random fields.

The model parameters Q@ = {® O} are learned
from training data consisting of labeled action sequences
(X® z®)), The labeled image-to-pose data (x*),y(*),
if available, can also be utilized as auxiliary data. The
optimal parameters 2* is obtained by maximizing the ob-
jective function:

1
LO) = Y logPEYIXO,0) 8> ()
t N ——’
L2(£2)
L1(2)

+ 0y log P(y"|x"), ©)
t

L3(2)

where the first term, denoted as L;({2), is the condi-
tional log-likelihood of the action training data. The sec-
ond term Lo(f2) is the log of Gaussian prior P(®) ~
exp (— 2z [|®[|*) with variance 2 and it prevents ® from
drifting too much. And the third term L3 () is the con-
ditional log-likelihood of the image-to-pose training data.

7 is a constant learning rate. Note that our model enables
the image-to-pose data to be naturally added to the learn-
ing process.

2.3.3 Discussion

Our LPCRF model can bridge the gap between the high
dimensional observations and the random fields. This
model replaces the observation layer of random fields
with a latent pose estimator that learns to convert the high
dimensional observations into more compact and infor-
mative representations under the supervision of labeled
action data. The structure of our model also enables trans-
fer learning to utilize the existing knowledge and data on
image-to-pose relationship.

Our model works better than CRF and LDCRF for
some cameras, while the latter works better for other cam-
eras. So in the testing stage, we dynamically choose the
model according to video scenarios.



3 Event Specific Approaches

3.1 Take Picture

The training data provided included instances of people
taking picture where the camera flash was activated. This
is an indoor environment and the shots being taken mostly
were compositions of several people. Under these imag-
ing conditions it is reasonable to expect that the hand held
cameras will produce a burst of flash. To look for picture
taking events we utilize a flash detector. Our flash de-
tection algorithm looks for an substantial increase in the
number of pixels in the top portion of the red channel his-
togram. Formally:

FlashScore; =

255

Z (RedHistogram(k) — RedHistogram(k))
k=200

“

where the range of k covers the brightest pixel values.

3.2 Opposing Flow

Under the setting of provided data, there are three doors
in the view of Camera 1 through which people can walk
through in the wrong direction. We have performed our
experiments on the rightmost and center doors on Cam-
era 1, which had all the instances of opposing flow in the
training data. In our basic approach we selected a rectan-
gular region, with its center about the shoulder height of
an average person and performed continuous 3D filtering
with our space-time Gabor filter [12], which was specifi-
cally tuned to detect right-to-left motion patterns.

X 1 0 0
Y| = 0 cos(f) —sin(6) (6)
T 0 sin(f) cos(0)
cosw 0 —sin(w) x
X 0 1 0 Y
sin(w) 0 cos(w) t

here w and @ determine the 3D orientation of the filter
in space-time and A\ determines the effective support of
the filter. We empirically evaluated several combinations
of parameters and chose the best performing set for final
method.

The response of the space-time Gabor filter is averaged
over the rectangular regions corresponding to both doors
and thresholded for detection only when the door is in
an open state. We learn the models for door open/close
states by clustering the average value of a 5 x 5 region
on the top left corner of each door using the Expectation
Maximization algorithm.

4 Results

We have submitted results for individual runs of the sys-
tems, as well as 3 combined results. When combining the
outputs of the event detectors, we used a simple weighted
combination scheme. Each system is assigned a weight
according to their relative strength and for each frame we
multiply this weight by the confidence output of the de-
tector for that particular frame. If the weighted combina-
tion of detector confidences for a frame is above a given
threshold we deem that the frame has the event. The re-
sults of our systems can be seen in tables 1 and 2

It can be seen that the first system has a high Actual
DCR score as there was no tuning of the confidence mea-
sure. In terms of minimum DCR scores, all systems be-
come competitive. This may be attributed to the fact that
all systems perform their best with either one false pos-
itive or one true detection output. However it is encour-
aging to note that some systems were able to get a DCR
score below 1.0 with proper tuning of the confidence pa-
rameter. The OpposingFlow detection was quite reliable
with false positives only being produced when a person
walks right-to-left in the shopping area and is tall enogh
to occlude one of the doors. The detector for TakePicture



Actual DCR Brute Tracking & | LPCRF M &2 & 3| 1)2 &3
Force Detection 3) Combined | Combined | Combined
Search (1) | (2)
CellToEar 1.3689 0.9985 1.0258 1.0166 1.0080 1.0092
ObjectPut 1.2537 1.0044 1.0437 1.0208 1.0094 1.0099
Pointing 1.2205 1.0029 1.0902 1.0440 1.0429 1.0293
OpposingFlow 0.4296 0.7632 1.0000 1.0000 0.4296
TakePicture 0.9577 1.0000 1.0000 0.9577
PersonRuns 1.0019 1.0089 1.0000 1.0089
Embrace 1.4042 4.0653 1.0000 4.0653
Elevator No Entry NA
Table 1: Actual DCR Scores by method and event
Minimum DCR Brute Tracking & | LPCRF 1 & @2 | 1) & 3| (1),2) &03)
Force Detection 3) Combined | Combined | Combined
Search (1) | (2)
CellToEar 1.0284 0.9971 0.9986 0.9978 1.0012 0.9987
ObjectPut 1.0019 0.9993 1.0020 1.0037 1.0036 1.0013
Pointing 1.0007 1.0007 1.0055 1.0000 1.0014 1.0005
OpposingFlow 0.4268 0.7632 1.0000 1.0000 0.4237
TakePicture 0.9577 1.0000 1.0000 0.9577
PersonRuns 1.0019 1.0089 1.0000 1.0089
Embrace 1.0046 1.0124 1.0000 1.0124
Elevator No Entry NA

Table 2: Minimum DCR Scores by method and event

event performed much below expectations because of the
fact that in the evaluation set there were many instances of
people taking picture with cameras that didn’t fire a flash.

5 Conclusions

Event detection in video is an emerging application area.
Literature on this subject is advancing fast and existing
test datasets are quickly being rendered too easy. Trecvid
surveillance event detection task is an interesting chal-
lenge to test the applicability of such algorithms in a real
world setting. Based on our key observation that there is
a wide variety in the appearance of the event types, we
have implemented and tested various algorithms and fea-
tures to detect eight of the ten required event categories.
The results reflect the magnitude of the difficulty of the
problem at hand, while we believe we have gained much

insight to the practical problems, and future evaluations
have the potential to produce much better results.
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