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Abstract 

 
In this paper, we summarize our results for the 

high-level feature extraction task at TRECVID 2008. 
Our last year’s high-level feature extraction system 
was based on low-level features as well as on state-of-
the-art approaches for camera motion estimation, text 
detection, face detection and audio segmentation. This 
system served as a basis for our experiments this year 
and was extended in several ways. First, we paid 
attention to the fact that most of the concepts suffered 
from a small number of positive training samples while 
offering a huge number of negative ones. We tried to 
reduce this unbalance of positive and negative training 
samples by sub-sampling the negative instances. 
Furthermore, we increased the number of positive 
training samples by creating image variations. Both 
methods improved the detection results significantly, 
while the sub-sampling approach achieved our best 
result (8.27% mean inferred average precision). 
Second, we incorporated two further feature types: 
Hough features and audio low-level features. Finally, 
we supplemented our approach using cross-validation 
in order to improve the high level feature extraction 
results. On the one hand, we applied cross-validation 
for feature selection, on the other hand we tried to find 
the best sampling rate of negative instances for each 
concept.  
 
1. Structured Abstract 
 
In this section, the results of our participation in the 
high-level feature extraction task are presented in the 
form of the requested structured abstract. In Section 2, 
we describe the extracted low-level features plus 
additional mid-level features, which are the result of 
state-of-the-art algorithms in the field of camera 
motion estimation [5], text detection [6], face detection 
[17], and audio segmentation. The components of our 
system are discussed in detail in Section 3. The 

experimental results are presented in Section 4. Section 
5 concludes the paper. 

 
The high-level feature extraction experiments were 
evaluated by the TRECVID team [16] using the 
inferred average precision measure suggested by 
Aslam et al. [2].  
 
“What approach or combination of approaches did 
you test in each of your submitted runs?” 
 
The following six runs of category “A” were 
submitted: 
 A_Marburg1: Baseline, TRECVID 2008 training 

set with merged annotations from active learning 
and MCQ-ECT-CAS; 

 A_Marburg2: Baseline plus using only every fourth 
negative sample for training; 

 A_Marburg3: Baseline plus Hough and audio low-
level features; 

 A_Marburg4: A_Marburg3 plus cross-validation 
for different sampling rates of negative instances; 

 A_Marburg5: A_Marburg3 plus image variations 
of positive samples; 

 A_Marburg6: A_Marburg3 plus cross-validation 
for feature subsets. 

 
“What, if any significant differences (in terms of 
what measures) did you find among the runs?” 
“Based on the results, can you estimate the relative 
contribution of each component of your 
system/approach to its effectiveness?” 
 
In a first experiment, we reduced the number of 
negative training instances by a simple sub-sampling 
method. This sub-sampling approach considered only 
every fourth negative sample and improved the results 
of  our last year’s baseline system significantly (from 
5.91% to 8.27% mean inferred average precision). It 



achieved our best run for high level feature extraction 
in terms of mean inferred average precision. 
Furthermore, we supplemented our low-level feature 
set with Hough and audio low-level features. This run 
(A_Marburg3) using the extended feature set showed a 
slight performance decrease (from 5.91% to 5.76% 
mean inferred average precision). Based on the 
previous system, we performed three further 
experiments. First, we applied sub-sampling of 
negative instances in combination with stratified 
threefold cross-validation in order to find the best 
sampling rate. Again we achieved clearly better results 
compared to the reference system (5.76% vs. 8.04% 
mean inferred average precision).  Second, we 
increased the number of positive training samples by 
creating image variations of positive key frames and 
thus improved the results to 7.39% mean inferred 
average precision. Third, we applied stratified 
threefold cross-validation to find the best feature subset 
for each concept. Interestingly, the use of this cross-
validation could not improve the detection results.  
 
“Overall, what did you learn about 
runs/approaches and the research question(s) that 
motivated them?” 
 
The experiments revealed that the approaches trying to 
reduce the unbalance between positive and negative 
training samples improved the high-level feature 
extraction results significantly. The sub-sampling of 
negative instances not only accelerated the process of 
building the concept model but most notably leads to 
clearly better results in terms of mean inferred average 
precision. Only the concept “Classroom” could not 
profit from this add-on in both related experiments. 
Likewise, the increase of positive training samples by 
creating image variations had a positive impact on the 
overall detection results. Particularly, the result of the 
concept “Mountain” was strongly boosted by this 
approach and achieved our best result for this concept. 
Furthermore, the experiments showed that the use of 
cross-validation for models built on different feature 
subsets brought no performance gain.        
 
2. Feature Extraction 
 
Our video analysis system automatically extracts 
several low-level as well as mid-level features. 
Compared to our last year’s system we additionally 
extracted audio low-level features and Hough features. 
In section 2.1 we describe our visual features, followed 
by the audio features in section 2.2.  
 

2.1 Visual Features 
 
Several visual features are extracted for each video 
shot. The frame in the middle of a shot was used as a 
key frame. If a key frame contains black bars, these top 
and bottom regions of the image are automatically 
detected and removed in a preprocessing step. The 
removal of black bars is realized by zooming into the 
image. The following low-level features are extracted 
from a key frame: color moments, color correlograms, 
Hough features, texture features and Gabor wavelet 
features. In addition, several mid-level features are 
extracted automatically from the entire shot by 
utilizing camera motion estimation [5], face detection 
[17] and text detection [6]. In the following, the 
extracted features are briefly described. 

Color moments: Color moments are extracted at two 
different granularities. The first three global color 
moments are computed for the whole key frame. 
Corresponding values are extracted for each region of a 
3 x 3 grid in HSV (Hue, Saturation, Value) color space. 
The i-th pixel of the j-th color channel of an image 
region is represented by cij. Then, the first three color 
moments are defined as: 
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Texture features: The gray-scale image co-occurrence 
matrices mk are constructed at 8 orientations. We use 
these matrices to extract the following values 
representing the global texture:  

 











1

0

1

0

2)(
N

i

N

j
kijk menergy                            (4) 

kij

N

i

N

j
k mjicontrast  









1

0

1

0

2)(                  (5) 











1

0

1

0

)(
N

i

N

j
kijkijk mlogmentropy              (6) 










 


1

0

1

0 1

N

i

N

j

kij
k ji

m
yhomogeneit ,                    (7) 

 

where N is the number of gray values and mkij is the 
value of the co-occurrence matrix mk at position (i, j). 

Color autocorrelograms:  Color correlograms describe 
the spatial relationship between colors, whereas auto-
correlograms are limited to identical colors. An 
autocorrelogram expresses the probabilities of colors to 
re-occurr in a certain distance. We preferred small 
distances (1, 4, 7, 10, 13, 16 and 19 pixel), so that local 
spatial correlations of identical colors are represented 
by the correlogram. Colors are described in HSV color 
space. By choosing a smaller number of bins 
representing the brightness component we get more 
independent of illumination changes. In total, each 
color correlogram results in a 350-dimensional feature 
vector. 

Hough features: The Hough transform is a feature 
extraction method to detect parametrizable geometrical 
objects in binary gradient images. We used the 
probabilistic Hough transform provided by the 
OpenCV library [15] to detect lines in edge images. 
The binary gradient images are the result of the robust 
canny edge detection algorithm. The results of the 
Hough transform are exploited to build two-
dimensional histograms based on the orientation and 
length of the detected lines. Altogether we obtain ten 
histograms, one global histogram and one for each 
region of a 3 x 3 grid. Using 6 bins for length 
respectively orientation, we totally obtain a 360-
dimensional feature vector.    

Gabor wavelet features: Gabor wavelet features are 
extracted for eight orientations and five frequencies. 
The functions to compute the wavelet coefficients can 
be expressed as follows [8]: 
 












cossin'

coscos'

)
'

2cos(),(
2

222

2

''

,,,,

yxy

yxx

x
eyxg

yx









    (8) 

 

A Gabor wavelet is controlled by five parameters: 
orientation , wave length , phase , radius  of the 
Gaussian function, and the aspect ratio . The radius of 
the Gaussian function is chosen proportionally to the 
wave length, and the aspect ratio is fixed to 1. Gabor 
energies of a pixel for the different orientation and 
spatial-frequency combinations are obtained by a 

superposition of the phases 0 and π/2 using the L2-
Norm. The resulting 40 Gabor energies per pixel are 
summarized in a Gabor histogram describing the whole 
image. By distinguishing ten energy classes, we obtain 
400 histogram feature values. We further computed the 
average result of each Gabor energy filter for each 
region of a 4 x 4 grid. Thus, the total number of Gabor 
wavelet features amounts to 1040 values. 

Camera motion features: Motion vectors embedded in 
MPEG videos are employed to estimate camera motion 
at the granularity of P-frames, according to the 
approach presented in [5]. The following camera 
motion types are distinguished: translation along the x-
axis, respectively y-axis, rotation around the x-axis, 
respectively y-axis and z-axis, and zoom. The 
distribution of the values for a shot concerning the 
different camera motion types are described by using 
the following statistical values: mean, median, 
minimum, maximum, standard deviation, and 
skewness. In addition, the percentages of a shot 
concerning the different camera motion types pan, tilt 
and zoom are considered, so that we finally get a 39-
dimensional camera motion vector. 

Text features: A robust text detection approach [6], 
which can automatically detect horizontally aligned 
text with different sizes, fonts, colors and languages, is 
applied at the granularity of I-frames. First, a wavelet 
transformation is applied to the image and the 
distribution of high-frequency wavelet coefficients is 
considered to statistically characterize text and non-
text areas. Then, the k-means algorithm is used to 
classify text areas in the image. The detected text areas 
undergo a projection analysis in order to refine their 
localization. We use the detected text areas to derive 
the following features per shot: the number of 
appearing text elements, the average text position, the 
average text frame coverage, and the average number 
of text elements per frame. 

Face features: Frontal and profile faces are detected in 
each video frame using the face detector provided by 
the OpenCV library [15]. The face detection approach 
is an implementation of the approach suggested by 
Viola and Jones [17] with Lienhart’s extensions [10]. 
The Adaboost-based approach of Viola and Jones was 
chosen since it is a very fast approach that nearly 
operates in real-time on today’s computers and thus 
can even be applied to every single frame of a 
sequence. Since their approach usually reports many 
detections of slightly different sizes and positions, an 
average rectangle is computed based on the reported 
detections, in case that the number of detections 
exceeds a threshold. A tracking procedure also based 
on the OpenCV library is used to assemble face 



appearances of the same person in subsequent frames 
of a shot using the optical flow computation of 
Bouquet [3], which is an extension of the Lukas-
Kanade [13] algorithm. The extension processes image 
pyramids to enable the estimation of fast movements as 
well. For each shot, the number of face sequences, the 
number of detected faces, front faces respectively 
profile faces, the average frontal or profile shot size, 
respectively, the mean number of detection hits for 
frontal faces or profile faces, respectively, and the 
percentage length of a shot, where a person appears, 
are considered as mid-level features. 
 
2.2 Audio Features 
 
This year we incorporated audio low-level as well as 
mid-level features in our concept detection system. To 
further analyze the audio data, the extracted low-level 
audio features were fed into a content-based audio 
classification and segmentation system based on the 
approach of Lu et al. [12].  
 
Audio low-level features: We extracted two sets of 
low-level audio features: The first set serves as the 
basis for the mid-level features described below. It is 
specifically tailored to facilitate audio type 
classification and contains the following quantities, 
extracted from non-overlapping 25ms frames [12]: 8th-
order mel-frequency cepstrum coefficients (MFCCs), 
zero-crossing rate, short time energy, sub-band energy 
distribution, brightness and bandwidth, spectrum flux, 
band periodicity , a measure of frame noisiness and the 
position of the cepstral peak. The second low-level 
feature set is composed to give a more general view of 
the audio content of a shot and to facilitate the 
recognition of e.g. single sounds directly in our 
concept detection system. It comprises 20 MFCCs with 
their first order derivatives, 10 line spectral pairs and a 
measure of pitch. These 51 features were each 
summarized per shot in a histogram comprising 10 
bins, resulting in a 510-dimensional audio low-level 
feature vector.  
 
Audio mid-level features: The audio type classification 
system produces mid-level features on a per-second 
(sub-clip) basis in the form of acoustic class labels and 
related probabilities for “silence”, “speech”, “pure 
speech”, “non-pure speech”, “music”, “background” 
and “action” sounds (an error label, “undefined”, may 
also be produced). The low-level features are therefore 
aggregated per second, normalized and then 
concatenated to form one feature vector per sub-clip, 
which is processed by a hierarchical tree of support 
vector machines, if it was not previously classified as 

silence by a threshold based classifier. Figure 1 shows 
this classification tree, which is trained on more than 
32 hours of audio samples including, among others, the 
TIMIT data for clean speech [11] and the NOIZEUS 
[7] corpus. Five-fold cross-validation on a subset of 
15000 feature vectors was used to find the best 
parameter settings for each two-class support vector 
machine with a RBF (radial basis function) kernel 
using the libSVM library [4]. Finalizing the classifier’s 
decision, short silence periods within speech are 
labeled as “pause” by a heuristic decision function. A 
second algorithm based on the work of Ahmadi and 
Spanias [1] processes energy, zero-crossing rate and 
cepstral peak low-level features to add “voiced”- and 
“unvoiced” speech labels to the mid-level features. 
 

 

Figure 1: Scheme of the hierarchical audio type 
classifier: A single feature vector per sub-clip serves 
as input; output is a single acoustic class label and 
its corresponding probability. 

All 11 mid-level features are then processed to 
describe the audio-content of a video shot by statistical 
values: mean, median, minimum, maximum, standard 
deviation, and skewness of the per-frame label-
probabilities are calculated. Furthermore, the 
percentage of each audio type label with respect to the 
shot length is calculated. Finally, these percentages and 
the distribution properties of the probabilities are fed 
into the further learning algorithm as the final audio 
mid-level features, resulting in a 77-dimensional 
feature vector. 
 
 
3. High-Level Feature Detection System 
 
The goal of the proposed system is to learn models for 
the high-level semantic features based on the extracted 
audiovisual low-level and mid-level features described 
in section 2. In our baseline system (figure 2) we 
concatenated the multi-modal low-level and mid-level 



features in an early fusion scheme and fed them 
directly into a support vector machine with a radial 
basis function kernel using the implementation 
provided by the libSVM library [4]. 
To reduce the unbalance of positive and negative 
training samples, which concerns nearly all concepts, 
we applied the following two approaches. First, we 
reduced the number of negative instances by sub-
sampling. Second, we increased the number of positive 
samples by creating image variations of positive key 
frames, where the number of these variations was 
dependent of the number of available positive training 
samples for a concept. Our goal was to obtain a 
number of positive training samples which was 
between 1200 and 1500. The number of applied 
variations varied depending on the number of available 
positive samples per concept. If the number of positive 
samples was above 1000, then no additional positive 
training samples were created. The following 
variations (in total up to 16 dependent on the concept) 
were applied: 
 the brightness of the keyf rame was normalized; 
 the key frame was smoothed with a Gaussian 

filter; 
 it was zoomed into the image, i.e. an region of size 

¾*width and ¾*height was cropped from the 
middle of the keyframe and scaled up to the 
original keyframe width and height; 

 several rotated variations of the keyframe and the 
zoomed keyframe were created: with an rotation 
angle between -15° and +15° and a step size of 5°. 

 
The features that were extracted from the whole shot 
and not only from the keyframe were left unchanged 
for the new instances. We obtained up to 16 additional 
training instances for each positive training sample.  
 

 

Figure 2: Overview of our baseline system. 

Moreover, we used stratified three-fold cross-
validation to find the best sampling rate for reducing 
the negative instances and to get the best subset of 
features for each concept. Inside the cross-validation 
process, we used average precision scores for 
evaluation. 
 
4. Experimental Results 
 
In this section, we present our results for the high-level 
feature extraction task. We submitted six runs of 
category “A”. The MDC decoder was used for MPEG 
decoding [9] in our experiments. Our first run 
A_Marburg1 corresponds to the baseline system of the 
last year’s challenge. 
 

 

Figure 3: Overview of the results of our six runs in 
terms of mean inferred average precision. 

In a first experiment (A_Marburg3) we extended this 
baseline system by a sub-sampling method, which 
considers only every fourth negative sample and thus 
reduces the number of negative training instances. This 
simple sub-sampling approach improved the results of 
our last year’s baseline system significantly (from 
5.91% to 8.27% mean inferred average precision) and 
achieved our best run for high-level feature extraction 
in terms of mean inferred average precision. 
Furthermore, we enlarged our low-level feature set by 
adding Hough and audio low-level features, as 
described in Section 2. This run (A_Marburg3) using 
the extended feature set showed a slight performance 
decrease (5.91% vs. 5.76% mean inferred average 
precision). Based on this system, we performed three 
further experiments. We observed that most of the 
concepts suffer from a small number of positive 
training samples while offering a huge number of 
negative ones. Therefore, two of the following 
experiments reduce this unbalance of positive and 



negative training samples. Once more, we applied sub-
sampling of negative instances, but this time in 
combination with stratified threefold cross-validation 
in order to find the best sampling rate. Again we 
achieved clearly better results compared to the 
reference system A_Marburg3 (5.76% vs. 8.04% mean 
inferred average precision). Only the concept 
“Classroom” did not profit from the sub-sampling 
approach in both related experiments. Second, we 
increased the number of positive training samples by 
creating image variations, as described in Section 3. 
This run (Marburg5) achieved clearly better results as 
well (7.39% mean inferred average precision).  
Particularly the result of the concept “Mountain” was 
strongly boosted by this approach and achieved our 
best result for this concept. 
Finally, we applied stratified threefold cross-validation 
to find the best feature subset for each concept. Due to 
lack of time, we first performed cross-validation for 
each of our feature sets. Thereafter, we regarded the 
top four feature sets and validated all possible subsets. 
Using the concept models based on the best feature 
subset did not improve the detection results. The 
results decreased from 5.76% to 4.07% mean inferred 

average precision. Figure 3 gives an overview of the 
results of all our submitted runs.  
  
5. Conclusions  
 
In this paper, we presented our experiments for the 
high-level feature extraction task. Our high-level 
feature extraction of the last year was extended in 
several ways. First, we incorporated two new feature 
types, namely Hough and audio low-level features. 
These features did not contribute to an improvement of 
the results in terms of mean inferred average precision. 
Second, we tried to reduce the unbalance of positive 
and negative training samples, which most of the 
concepts exhibited. Both – the reduction of negative 
training instances by sub-sampling and the generation 
of positive samples by creating image variations – 
clearly improved the results. Interestingly, the use of 
cross-validation for performance estimation of models 
built on different feature subsets did not improve the 
detection results. This performance loss probably 
happened due to over-fitting.  
In total, our best run based on sub-sampling negative 
instances obtained a mean inferred average precision of 
8.27%.  

Figure 4: Comparison of our submitted runs concerning all evaluated high-level features. The median values 
refer to all submitted high-level feature extraction runs. 
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