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Abstract

In this paper we describe our experiments in High-level feature extraction (HLF) and Search tasks of the 2009 
TRECVid evaluation. This year, we have concentrated mainly on the local (affine covariant) image features 
and their transformation into a searchable form, especially using the indexing techniques.

In brief, we have submitted the following runs:

1. HLF: We have used training method based on support vector machine (SVM) using five types of 
global and local image features. Results were submitted in the BRNO_HLF_SI run.

2. Search: We have performed a fully automatic experiment based on the transformed local image 
features together with face detection and global features – color layout and texture features in the 
BrnoUT_visual.2 run.

The paper is organized as follows. In Section 1, a motivation and an overview of the work is presented. 
We dedicated Section 2 to the feature extraction task, which is being used in common by the HLF and 
Search tasks. Details of the tasks we have sent are given in Section 3 and Section 4. Finally, Section 5 
discusses the achieved results and concludes the paper. The result tables are attached at the end of the 
paper.
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1. Introduction

Brno University of Technology, Faculty of Information Technology has taken  part at TRECVid third 
time in a row this year [1]. In the past three years, we have developed a lot of software, specifically many 
shell and Perl scripts, programs written in C for video and feature processing as well as PostgreSQL 
native  functions  and  a  Java  program  for  video  retrieval  which  has  a  simple  interface  and  a  web 
demonstration application (see Figure 1 below). 

Figure 1. A screenshot of TRECVid Search web demonstration application in expert mode. 
See also http://www.fit.vutbr.cz/research/prod/index.php.en?id=73.

2. Sound and Vision dataset preprocessing

The feature extraction for High-level and Search tasks have a lot in common; thus they are presented 
along.  Before  the  particular  tasks  are  described,  the  low-level  feature  extraction,  face  detection, 
clustering, and indexing search techniques used are described.



Feature extraction

Feature extraction is an automated process of extracting structured information from the unstructured 
data, both representing the same object. Its output is a feature vector characteristic for the data (and 
objects contained in the data). In our case, the data is a multimedia shot – a sequence of frames between 
two cuts. The shot may be represented through several keyframes, camera and object motion, or through 
speech and sound. This paper is focused only on visual features. They can be either global – concerning 
the whole video frame (e.g. color histograms, layout, or an amount of motion), or local – concerning 
regions  smaller  than  the  frame.  Video  search  based  on  local  feature  descriptors  currently  seems to 
outperform other approaches [1]. 

Color histogram Based on HSV color model

The color histogram contains statistical information about color distribution in terms of frequency of 
hues and saturations in the frame (using HSV color model). The better spatial description is achieved by 
dividing the frame into several patches. The frame division is not adaptive, so the patches have similar 
size. Each patch is processed separately; the histogram is computed and normalized.

Multi-scale gradient distribution

The histogram of gradient orientations serves as other part of the feature vector. First, the frame gradients 
are computed. Then, each gradient contributes to the histogram bin according to its orientation. The 
contributions are weighted using the gradient magnitude. The gradients are computed on different frame 
resolutions so also lower frequency structures contribute to final feature vector. The resolution of both 
color histogram and gradient histogram, the resolution of the frame grid, and the frame scale levels are 
the descriptor parameters.

Color layout 

The color layout computation is based on  JPEG compression technique. First, the image is resampled 
into 8x8 pixels in Y'CbCr color model. Then, the discrete cosine transform (DCT) is applied on each 
channel. The descriptor coefficients are then extracted in zig-zag manner [12] as illustrated in Figure 2. 
We use 20 (Y) + 15 (Cb and Cr) coefficients; thus the feature vector has 50 coefficients.

Figure 2. Illustration of the color layout description process.

Gabor texture

Using a bank of Gabor filters [13] in the frequency domain, we can divide the space created eg. using 
Fourier transform, into bands, as illustrated in Figure 2 above. We use the first moments of energy in the 
filtered 30 sub-bands (GP) – 6 angular (30°) and 5 radial (in octaves) for construction of the descriptor.

DCT



Figure 3. Illustration of the Gabor texture description process.

Local features

Local features represent visual objects as a compound structure of statistically interesting regions, such 
as points, edges, or homogenous regions (in color) [14]. The local feature extraction process consists of 
two steps – detection of remarkable objects in images and their description. The main property of these 
steps is the repeatability – an ability to detect and describe the same object uniformly under various 
fotometric conditions, geometric conditions, and noise. We have employed two types of detectors and 
descriptors.

Maximally Stable Extremal Regions

Maximally Stable Extremal Regions (MSER) have been used for finding of connected components of an 
appropriately thresholded image (experimentally) to be maximally stable. Extremal in this context means 
that all the pixels inside the region have lower intensity (are darker) or higher intensity than pixels at the 
edge of the region [14].

Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT) [14] has been used for description of regions found by MSER. 
It captures an information (about an elliptic neighborhood) of the point of interest (center of the region) 
using a histogram of locally oriented gradients and stores it as a vector of size 128 (8 orientations, each 
in 4x4 locations).

 
Figure 4. An Illustration of affine covariant regions (SURFs) on 

different high level concepts – face, text and crowd.
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Speeded Up Robust Features

Speeded Up Robust Features (SURF) is used for the detection of interesting points based on determinant 
of Hessian matrix (second partial derivatives) of an integral image. The description is based on Haar 
transformation, similarly to the SIFT descriptor. It is illustrated in Figure 4.

Frame signatures

Visual Vocabulary was used for vector quantization of local feature descriptors. The vocabularies were 
constructed separately for SIFTs and SURFs in training stage. We used kd-tree for data search and k-
means to detect clusters. The sizes of vocabularies were 1k for TRECVID purposes. The video frames 
were then described as bag-of-words that is unordered set of weighted visual words. The used weighting 
scheme was standard tf-idf [22].

Face detection

The knowledge about presence of people in a video is a valuable source of information for both Search 
and High-level feature extraction tasks. Many possible ways of detecting people in image exist, one of 
which is the face detection. The face detection task has been well studied and many methods for reliable 
real-time detection exist. The most successful are appearance-based methods which use some variation 
of a cascade of simple boosted classifiers to scan the images. This approach was originally proposed by 
Viola and Jones in 2001 [20]. 

We have used a frontal face detector to extract four low-level features from the video frames. One of the 
features  was the  total  number  of  faces  present  in  a  video frame.  The other  three  features  were  the 
numbers of small, medium, and large faces in the frame. The rationale behind this choice was that the 
number and sizes of faces are more informative then their positions and that the number of detections is 
too small to make this information even sparser by considering the position.

Four classifiers in total with random initial choice of training samples were created by the WaldBoost 
algorithm [21]. During detection,  the responses of the individual  classifiers were integrated thriough 
weighted voting to get the final detections. Instead of the traditional Haar-like features[20], the Local 
Rank Patterns (LRP) [4] were used as features by the classifiers. The LRP features were chosen because 
they show better performance on the frontal face detection task [4] than the Haar-like features especially 
in combination with the slower and more precise classifiers which were used for this particular task. The 
classifiers were created using our experimental framework for research on detection classifiers [5].

3. High-level feature extraction

The most important parts of the system in the figure below are these:

a) Low-level feature extractors – These are described in section 3.1. Several feature extractors are 
employed; their feature vectors are concatenated to make a per-frame feature vector. Note, that 
the features are relatively generic. Feature range normalization is part of the feature extraction 
process.

b) SVM training and cross-validation – Using grid-search, the SVM kernels are optimized and for 
each high-level feature to be searched, one model is selected by the Model Selection module.

c) Per-frame SVM evaluation – Evaluates the low-level feature vector for each frame in the testing 
dataset based on the selected SVM model for each high level feature.

d) Per-shot decision – Judges the set of per-frame classifications based on the shot-boundary 
reference to make a decision on each shot of the testing video dataset.



Figure 5. The structure of the  high-level feature extraction system.

The system can be described as a brute-force approach to high-level feature extraction since the low-
level features are rather generic than built to match specially the high-level concepts looked for. Also, the 
main classification machine (SVM) is generic. The only specialized part of the system is the per-shot 
decision making subsystem which constitutes a very simplistic decision tree.

Composed per-frame feature vector and its processing

All  the partial  feature vectors mentioned in the previous text  are concatenated to make a per-frame 
feature vector which serves as input to the per-frame classifier described in the next paragraph. This 
feature vector is normalized across the whole data-set, i.e. maxima and minima for separate features are 
found in  the  training dataset  and the  features  are  independently  rescaled  so  that  these  maxima and 
minima correspond to 0.0 or 1.0 respectively. The scaling factors are used for the test data, which can 
then  (scaled)  exceed  the  normal  interval  (0-1).  These  infrequent  cases  were  not  found  harmful  for 
evaluation using the SVM classifier.  These operations were significantly sped up by using database 
storage where all features, all videos metadata, and embedded rescaling functions are stored.

Per-frame SVM classifier

LIBSVM [10] was used for classification of separate frames – one classifier was trained for each high 
level feature to be detected. Given that, shot annotations were used for all the frames in a given shot. The 
SVM classifier was trained on 70% of the training data provided and cross-evaluated on the resting 30%. 
This cross-evaluation was used for selection of proper parameters of the SVM kernels. The SVM training 
and parameters selection took majority of the development time (thousands of hours sequentially) and 
this would be the part most likely to get speeded up in future versions of the system.

Per-shot decision based on per-frame results

For each high level feature separately, the results from per-frame classification were judged for each shot 
(dropping frames at the beginning and end of each shot to avoid misclassification). Two quantities were 
observed in this decision process:

 Positive rate R = N/P, where P is the number of positively judged frames and N is number of all 
frames (excluding the dropped initial and tailing frames in each shot).

 Largest positive sequence s is the length of the longest sequence of positively judged frames.

Two thresholds are defined for these quantities rt, st; exceeding either of them selected the shot being 



judged for output. These two threshold values were found experimentally on the testing data. The output 
(positively classified) shots were sorted by the value of r; in cases their number would have exceeded the 
given TRECVID limit of positive shots, shots with largest r were selected.

Results, future work

The results  of  our  system for  the  high-level  feature  extraction  task  in  TRECVid 2009 were  below 
average. We would have expected significantly better results, if we had the time to employ our object 
classifiers trained for different classes of objects then faces (vehicles, planes, animals), text and local 
features entering the ensemble classification.

4. Search

The video retrieval is based on similarity search in a database containing the video metadata. A video 
query has a form of an example – a multimedia object (text, image video) from which visual or high-
level conceptual features are extracted. The features are then compared to the features in the database 
that represent objects in video. The objects represented in the database by the most similar features are 
selected as a result of the query.

The scheme of the developed system is illustrated in the figure below. It includes the user (NIST) of the 
system who provides data and the queries and is a consumer of the results. The video data is being 
(automatically)  annotated  in  the  same  manner  as  in  the  High-level  feature  extraction  task.  So  the 
database is filled with per keyframe feature vectors including color and texture descriptors, faces found 
in the image as described in section 3.1. and other data provided by NIST.

Figure 6. The structure of the multimedia retrieval system.

Techniques

For the content-based copy detection and search tasks, before all, we have used the PostgreSQL database 
system. There we store all extracted features, video and shot metadata, annotations, ASR and MT data.

For  the  fixed-length  (low-level)  features,  we  have  employed  standard  Euclidean  distance  (p=2 in)
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idf(w) = tf(w)idf(w), where tf w =
∣d w ∣

∣d∣
, idf w =log  ∣D∣

∣D w ∣ . We also use the Generalized 

Inverted (document) Index (GIN, [16]) to speed up the queries. This is illustrated in the figure below. 

Figure 7. The visual document retrieval process.

However, these techniques were unable to find anything in case of the local features in serious time; thus 
we had to employ some reduction of the search space, similarly to the [18]. However, in that approach 
the dictionary construction (clustering) is even much more severe, because the search can be parallelized. 
Thus we have used another one described next.

Voronoi tessellation based clustering of the local features

Although, many clustering techniques exist, it is not possible to use them for all purposes. The initiatial 
task was to create as many clusters as possible (eg. thousands) for the local image features description in 
huge amount of video for Content-based copy detection and Search tasks. We have obtained 25 mil. of 
MSER/SIFT [14]  feature  vectors  (32  GB)  and  38  milion  SURF [15]  descriptors  (41  GB)  of  local 
invariant features, as described in section 3.1. These large dimensional vectors cover the space almost 
continuously and commonly used clustering methods are unable to create enough classes or to finish in 
serious  time.  For  that  purpose  we  have  used  (also  modified)  versions  of  k-Means  and  DBSCAN 
clustering methods [8]. However, in the related literature, the problem is mentioned to have solution only 
for approximately 1GB of the data, when thousands of classes are needed.

Therefore, we have designed a new method based on Voronoi tessellation [7] that needs no more than 
two passes through the data. The approach is based on discovery of clusters in higher density locations. 
Because of  the large dataset,  it  is  possible to create  higher  amount  of  candidate  clusters  and select 
appropriate number of classes (large but not huge) and the rest data assign to these classes. The method 
has been implemented as a set of SQL functions and queries, the pseudo code follows:

Algoritm 1: Candidate classes discovery.

for each ( SELECT f.vector_id, f.vector 
           FROM fvectors as f ) {
   SELECT c.cluster_id, 
          distance( f.vector, c.vector ) AS dist
   FROM clusters AS c
   ORDER BY dist LIMIT 1;
   if ( dist > mindistance )
      INSERT INTO clusters 
      VALUES ( next(cluster_id), f.vector, 1 );
   else
      UPDATE clusters SET n_vectors += 1
      WHERE cluster_id = c.cluster_id
};



Algorithm 2: Two variants of class selection (third is using a clustering method :)

DELETE FROM clusters 
WHERE n_vectors < minvectors
   OR
   cluster_id NOT IN (
      SELECT cluster_id FROM clusters

      ORDER BY n_vectors DESC LIMIT maxclusters );

Algorithm 3: Clusters assignment.

for each ( SELECT f.vector_id, f.vector 
           FROM fvectors as f ) {
   SELECT c.cluster_id, 
          distance(f.vector, c.vector) AS dist
   FROM clusters AS c
   ORDER BY dist LIMIT 1;
   UPDATE fvectors SET cluster=c.cluster_id 
   WHERE vector_id = f.vector_id;
};

The approach has been tested on a huge problem and a large amount of classes. Performed experiments 
(to be published) have proven that the new approach is significantly faster than the traditional techniques 
(linear complexity). The tf-idf weighting and cosine distance have been then used to accomplish the task.

5. Achieved results and conclusions

High-level feature extraction

Our solution can be generally described as a  brute-force  approach which relies  on generic  software 
pieces  (several  feature  extractors,  SVM  library,  training/evaluation  framework  for  distributed 
computing), that solve the task in an “uninformed” way. We have sent one result based on the global 
low-level features, the face detector and bag-of-word like sparse features.

For future implementations of HLF extraction for TRECVID or similar evaluations, we intend to include 
more  object  detectors,  other  types  of  features,  and  similar  frame-processing  engines  to  provide 
specialized and “informed” knowledge to the overall classification process. These will be represented as 
mid-level  features  entering  the  per-frame  classifier.  Also,  many  speed-up  optimizations  have  been 
suggested  from  the  undertaken  runs,  which  would  enable  more  experimenting  for  future 
implementations.

Search

The BrnoUT_visual.2 run is based only on global (color, texture) and local (MSER/SIFT, SURF) image 
features and aggregated face descriptor. The run performance was average, which is surprising after good 
results last year. However, this was caused by the fact that we have not innovated the techniques much 
since  the  last  year  because  of  the  lack of  the  manpower  and  the  TRECVid community  has  moved 
forward very much.

Overall conclusions

We have to thank all the people in NIST and groups providing data, transformed data, video and shot 
references,  speech,  translations,  keyframes,  annotations,  evaluation  metrics,  and  all  the  human  and 
computer power. We think that this is the real force of TRECVid, together with the inspiration from and 
of all the participants and groups.
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