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Abstract

Our experiments in TRECVID 2009 include participation in the high-level feature extraction and automatic search tasks.
In the high-level feature extraction task, we used a feature fusion-based general system architecture utilizing a large number

of SVM detectors, followed by a post-processing stage utilizing the concepts’ temporal and inter-concept co-occurrences. We
submitted the following six runs:
• PicSOM.base: Baseline run using our SOM-based HLF detection method
• PicSOM.A-ngram: Baseline SVM-based run using HLF-wise geometric mean fusion and temporal n-gram post-processing
• PicSOM.B-ngram: As previous, but includes also early fusion, multi-fold SFBS fusion, and more elaborate SVM training
• PicSOM.E-ngram: As previous, but includes two-stage fusion utilizing cross-concept co-occurrence
• PicSOM.spec-ngram: A run where the used method was selected for each HLF separately using cross-validation
• PicSOM.spec-any: As previous, but the post-processing used also clustering-based inter-concept co-occurrence analysis
The results show that feature fusion can consistently outperform all single features, multi-fold SFBS performed best of the
tested fusion methods, and that temporal n-gram analysis is beneficial. Early fusion, and post-processing based on inter-concept
co-occurrences did not improve the performance.

In the search task, we concentrated on the fully-automatic runs and standard search task. We combined ASR/MT text search
and concept-based retrieval. If none of the concept models could be matched with the query, we used content-based retrieval
based on the video and image examples instead. We submitted the following ten fully-automatic runs:
• F_A_N_PicSOM_1_10: text search baseline
• F_A_N_PicSOM_2_9: visual baseline
• F_A_N_PicSOM_3_8: own concepts
• F_A_N_PicSOM_4_7: own concepts + text search
• F_A_N_PicSOM_5_6: donated concepts
• F_A_N_PicSOM_6_5: donated concepts + text search
• F_A_N_PicSOM_7_4: own + donated concepts
• F_A_N_PicSOM_8_3: own + donated concepts + text search
• F_A_N_PicSOM_9_2: own + donated (dupl.) concepts
• F_A_N_PicSOM_10_1: own + donated (dupl.) concepts + text search
In the above list, “own” concepts refer to our own HLF detectors and “donated” concepts consist of MediaMill (MM) concepts +
CU-VIREO374 concepts. In other than the last two runs, CU-VIREO374 are only used for words for which no MediaMill concept
could be matched. The results show again that concept-based retrieval performed better than content-based search alone. Text
search made a small improvement in combination with other modalities, but performed really badly on its own. Concept-selection
was done both with word-matching and example-based matching, i.e. selecting concepts based on how well they would fit our
own concept models.

I. INTRODUCTION

In this paper, we describe our experiments for the
TRECVID 2009 [1] evaluations. We participated only in the
high-level feature (HLF) extraction and automatic search tasks.
This year, we essentially substituted our Self-Organizing Map
(SOM) based analysis framework (e.g. [2], [3]) with SVM-
based classifiers for the high-level features. In automatic
search, we combined text search with HLF classifiers trained
by us and with HLF classifiers donated by the MediaMill and
CU-VIREO teams. SOM-based retrieval using the PicSOM
system [4] was used in HLF detection as a baseline system
and in search when no HLF detectors were available.

The rest of this notebook paper is organized as follows. The
low-level features used in both tasks are briefly described in
Section II. Our experiments for the HLF extraction and search
tasks are described in Sections III and IV, respectively. The
overall conclusions are presented in Section V.

II. LOW-LEVEL FEATURES

We extracted in total 3 video and 18 still image (keyframe)
features. The keyframes were extracted from the video shots
in the master shot reference [5] using a heuristic algorithm
(see [2]). Separate SOMs of size 256×256 map units were
then trained for each of the video and image features.

The used features are briefly described in Sections II-A to
II-C.

A. Image features

For the video keyframes and image examples we used a
set of standard image features. Our extracted features include
five MPEG-7 descriptors implemented in the XM reference
software, our own implementations of four of the MPEG-7
descriptors, and seven other image features: Average Color,
Color Moments, Texture Neighborhood, Edge Histogram, Edge



Co-occurrence, Edge Fourier, and SIFT (ip). See [2] for details
of these features.

In addition we extracted ColorSIFT features [6] using the
opponent color space and with two different sampling strate-
gies: the Harris-Laplace salient point detector (Color SIFT
(ip)) and dense sampling (Color SIFT (dense)). The codebooks
for both variations were generated by first taking a random
sample of 100 keyframes and calculating the features for all
of their sampled points. The resulting vectors were partitioned
into 1000 clusters using k-means. The cluster centroids were
then selected as the codebook vectors.

B. Video features

For the video shots we used temporal extensions of three of
the calculated still-image features: one of our own MPEG-7
implementation of Color Layout and two variations of Edge
Histogram. See [2] for details.

C. Text features

The Dutch automatic speech recognition (ASR) output [7]
was machine-translated (MT) to English. We used only the
English documents on the shot level using temporal smoothing
(see Section IV-B). Similarly as in previous years’ experi-
ments, we indexed the ASR/MT output using the Apache
Lucene text search engine. The Snowball stemmer included
in Lucene was used with its default stop word list.

III. HIGH-LEVEL FEATURE EXTRACTION

This year we addressed the high-level feature (HLF) ex-
traction task with a well-established feature fusion-based gen-
eral system architecture: dozens of supervised detectors were
trained for each HLF, based on different shot-level image
and video features detailed in Section II. The probabilistic
detector outcomes were then fused. Finally, the fused detection
scores were re-adjusted based on the detector outcomes for
temporally neighboring video shots.

This system architecture has been used rather success-
fully in various multimedia content analysis tasks, including
TRECVIDs of previous years. This year we wanted to examine
whether the architecture still could provide reasonable HLF
detection performance if some of the system components
were updated. We also studied the effect of applying different
alternative techniques in various stages of the detection system.

An identical procedure was used for detecting all the HLFs.
As the concept-wise ground-truth for the supervised detectors
we used the annotations gathered by the organized collabora-
tive annotation effort [8]. All our submitted runs were of type
A. To validate and compare different alternative techniques
prior to submission we performed validation experiments with
a 2:1 split of the development data.

A. Components of the detection system

Our detector system contains many components that could
be implemented in different ways. In our experiments, we
studied some of these alternatives. Starting from the shot-level
feature extraction, our baseline alternative was to use all the 21

extracted image and video features of Sections II-A and II-B.
Additionally, we examined the option of augmenting the
feature set with early fusion, i.e. by concatenating some of the
feature vectors together after normalizing their components.

In our system, a number of feature and HLF specific
supervised detectors is trained based on the extracted features.
Previously, we have used a Self-Organizing Map (SOM) based
algorithm as this probabilistic supervised classifier component.
This year we replaced SOMs with Support Vector Machines
(SVM), motivated by large accuracy improvements we have
been observing in other classification tasks. We evaluated,
however, also one SOM-based run as a baseline.

The SVM implementation we used was an adaptation of the
C-SVC implementation of LIBSVM software library [9]. The
SVM parameters were selected with an approximate 10-fold
cross-validation search procedure that consisted of a heuristic
line search to identify a promising parameter region, followed
by a grid search in that region. The RBF kernel was used for
all the visual features. In addition, we also used χ2 kernel for
some of the visual features, resulting somewhat more detector
outcomes to be fused. For SVM training we employed two
strategies: faster training with rather radical sampling (at most
5000 training shots out of 36000 retained, including all the
positive examples), and more elaborate training with more
conservative sampling (12000 training shots retained).

We tried several alternative algorithms for fusing the de-
tector outcomes. As a baseline approach, we considered the
geometric mean of all the outcomes. Besides this unsupervised
fusion approach, we tried several supervised fusion methods
that require the detector outcomes also for the training set.
These were obtained with 10-fold cross-validation. One su-
pervised technique was SVM-based fusion employing RBF
kernels, another Bayesian Binary Regression (BBR) [10]. The
other alternatives we tried were variations of the scheme where
the basic fusion mechanism is still the geometric mean, but the
mean is calculated only of a subset of the detector outcomes,
selected by a sequential forward-backward search (SFBS). In
addition to basic SFBS, we tried the idea of reserving part of
the training set for validation and early-stopping the search
based on the performance in this validation set. We also tried
partitioning the training set into six folds. The SFBS algorithm
was run six times, each time leaving one fold outside. The
fusion outcome was the geometric mean of the geometric
means.

Besides the fusion algorithm, we also experimented with
the selection of the set of detectors that were fused for
each HLF. Our basic alternative was to fuse the outcomes
of the detectors that were trained for detecting this particular
HLF. We also tried to exploit inter-concept co-occurrence by
including detectors trained for all the other HLFs in the fusion.
This idea was implemented as a two-stage fusion scheme
where the detectors for each HLF were first fused separately. In
the second stage, the HLF-wise fusion was repeated otherwise
in the same way, but the set of detector outcomes to be fused
was augmented with fused detection outcomes for all the other
HLFs and their temporally smoothed versions.



TABLE I
AN OVERVIEW OF THE SVM-BASED RUNS IN THE HIGH-LEVEL FEATURE

EXTRACTION TASK. SEE TEXT FOR DETAILS.

run id fusion post-proc.
# PicSOM.+ early cross-c. n-gram co-occ. MIAP
4 base - - - - 0.039
1 A-ngram • 0.144
2 B-ngram • • 0.147
3 E-ngram • • • 0.138
6 spec-ngram ◦ ◦ • 0.151
5 spec-any ◦ ◦ • ◦ 0.143

additional run A1 • • • 0.136
additional run A2 • • • 0.136
additional run A3 • • • 0.142
additional run A4 • • 0.136

For temporal post-processing of the fusion outcomes, we
employed the techniques detailed in [11]. Those techniques
consist of an intra-concept n-gram smoothing technique, and
inter-concept techniques based on clustering. In our binary
n-gram technique the cross-validated fusion outcomes of the
training set are used for estimating a sigmoidal mapping model
from the fusion outcomes to probabilities of observing HLFs.
This estimation is performed separately for each different
temporal n-gram neighborhood. The models are applied to
test data by estimating the likelihood of each n-gram on basis
of the fused detector outcomes. The probabilities given by
the mappings conditional to different n-grams are averaged,
weighted by the estimated likelihoods.

Previously, the n-gram technique has been far more useful
than the inter-concept techniques that have sometimes been
even harmful. We thus considered the n-grams as our primary
temporal technique and evaluated the inter-concept techniques
just for reference. We selected the optimal n-gram order for
each HLF separately based on the 2:1 validation experiment.
We also evaluated the approach where the n-gram order was
selected jointly for all HLFs. We also briefly investigated the
idea of replacing the models specific for each different n-gram
with models conditional to the count of occurrences of the
HLF within a temporal neighborhood.

B. The submitted and additional runs

This section details the six submitted HLF runs as well as
some additional runs that were used as components in the
submitted runs. Table I shows an overview of the runs. Rows
of the table correspond to the runs. For the SVM-based runs
(i.e. all other runs but PicSOM.base), the columns refer
to whether early fusion, cross-concept late fusion, the tempo-
ral co-occurrence techniques, and temporal inter-concept co-
occurrence techniques were used. The “◦”s in the table denote
HLF-wise selection of that attribute in the corresponding run.
The rightmost column lists the corresponding mean inferred
average precision (MIAP) [12] values. In addition, Figure 1
shows the IAP results of our submitted runs for each evaluated
concept.

Because of the large number of combinations of variable
components in our system, the submitted runs were not enough

to systematically compare the alternatives. We thus addition-
ally evaluated dozens of runs ourselves after the benchmark
in order to be able to draw some specific conclusions on the
components. These runs are not addressed in this section.

The run PicSOM.base utilizes the SOM-based classifier
algorithm, as used in our last year’s experiments [3]. Ex-
haustive feature selection was performed with twofold cross-
validation on the development set for each concept separately.
The features were selected from a set of nine image and
video features that performed best last year plus the two new
ColorSIFT-based ones (a subset of the features presented in
Section II).

The run PicSOM.A-ngram is based on all the extracted
visual features, for some of which also χ2 SVM-detector was
trained. The faster training scheme was used for the SVM-
detectors. Fusion was performed separately for each HLF
by taking the geometric mean of all the detector outcomes.
Temporal post-processing was performed using the n-gram
technique with HLF-wise n-gram order selection based on the
validation experiment.

For the run PicSOM.B-ngram the feature set of
PicSOM.A-ngram was augmented with 11 feature com-
binations resulting from early fusion of some of the origi-
nal features. Two sets of detector outcomes were included
in fusion: those resulting both from the faster and from
the more elaborate SVM training schemes. Fusion was per-
formed separately for each HLF with early-stopping multi-
fold SFBS. The temporal post-processing was similar as in
PicSOM.A-ngram.

The run PicSOM.E-ngram utilized the two-stage fusion
mechanism to exploit cross-concept co-occurrence. The first
fusion stage fused the full set of SVMs, just as in run
PicSOM.B-ngram. For each HLF in turn, the first stage
fusion results for all HLFs were combined with limited set
of those HLF-specific SVM detector outcomes that were
trained with the faster SVM training scheme. The fusion
algorithm and temporal post-processing were similar as in
PicSOM.B-ngram.

The unsubmitted run A1 was otherwise similar as
PicSOM.E-ngram but both fusion stages utilized the full set
of SVM detectors obtained with both faster and more elaborate
training.

In the unsubmitted run A2 the starting point for both fusion
stages utilized the restricted set of SVM detectors obtained
with only the faster training scheme. Otherwise the run was
just as PicSOM.E-ngram.

In the unsubmitted run A3 the first fusion stage used the
restricted set of SVM detectors, whereas the second fusion
stage used the full set of SVM detectors. Otherwise the run
was just as PicSOM.E-ngram.

The unsubmitted run A4 was otherwise similar as
PicSOM.B-ngram, but only the restricted set of SVM
detectors obtained with the faster training scheme was used
as starting point for fusion.

The run PicSOM.spec-ngram was synthesized from the
above described runs (excluding PicSOM.base) by selecting



0.1

0.2

0.3

0.4

001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020

Fig. 1. The HLF-wise IAP results of our submitted runs for each evaluated HLF. The order of the runs is as in Table I. (i.e. the leftmost bar corresponds
to PicSOM.base, etc.) The median and maximum values over all submissions are illustrated as horizontal lines. The maximum IAP score of concept 009,
i.e. 0.566, is not within shown range.

for each HLF the technique that worked best among the seven
alternatives for that HLF in the 2:1 validation experiment. For
five HLFs the selected run was not among the three submitted
ones.

The run PicSOM.spec-any was formed similarly, but
the pool of seven runs among which the best was selected
was increased to 14 by extending the temporal n-gram post-
processing with the cross-concept co-occurrence techniques
of [11].

C. Conclusions from the HLF detection experiments

In this section we present our conclusions from the high-
level feature detection experiments. Partially these conclusions
are based on the evaluation of the submitted runs. More
importantly, we evaluated dozens of additional runs in order
to be able to compare different component techniques of the
detection system somewhat systematically. In most of the
results, the fluctuation in IAP results for individual HLF was
observed to be so strong that we felt we could not reliably
distinguish different algorithmic techniques. Thus we settle for
drawing conclusions on average only, i.e. on basis of MIAP
which we consider more reliable. However, there probably
are genuine differences between the HLFs—one technique
might really be suitable for detecting one HLF and some other
technique other HLFs. These differences will be missed by the
average case analysis.

The experiments were able to to clearly confirm our prior
understanding that SVM detectors are vastly more accurate
than SOM-based detectors. We were also able to confirm
that fusion of information given by numerous features clearly
outperforms good individual features, even with a somewhat
simplistic fusion algorithm. The best individual feature (Color
SIFT (dense)) produced MIAP of 0.099, whereas the HLF-
specific fusion (with multi-fold SFBS fusion and no temporal
post-processing) runs produced MIAPs ranging from 0.130 to
0.139. A manifestation of the HLF-wise fluctuation is that for

TABLE II
BEST INDIVIDUAL FEATURES IN THE HLF DETECTION TASK

Feature SVM training kernel MIAP

Color SIFT (dense) elaborate χ2 0.0988
Color SIFT (dense) fast χ2 0.0916
Color SIFT (dense) elaborate RBF 0.0711
Color SIFT (ip) elaborate RBF 0.0657
Color SIFT (ip) fast RBF 0.0620

SIFT (ip) elaborate χ2 0.0832
SIFT (ip) fast χ2 0.0813
SIFT (ip) elaborate RBF 0.0769

Edge Histogram (video) elaborate χ2 0.0625
Color Moments (image) elaborate RBF 0.0438
Edge Histogram (image) elaborate χ2 0.0403

three HLFs, at least one of the individual features was better
than the best one of the submitted fusion runs (interestingly,
neither ColorSIFT feature was the best individual feature in
any of these cases).

Table II lists a selection of the most accurate individual
feature/SVM combinations in terms of MIAP (some Col-
orSIFT and SIFT variants left out). On average, the more
elaborate SVM training produced somewhat more accurate
detectors than faster training for 80 % of the visual features.
For histogram type features, χ2 SVM kernels produced clearly
more accurate results than the RBF kernel.

This time, augmenting the feature set with early fusion,
did not improve performance of the whole system. In some
previous cases early fusion has been beneficial. On the level
of single SVM detectors, combined features surely resulted
in more accurate detectors than their individual constituent
features (best early fusion combination had MIAP 0.0601).
One explanation is that the best individual features were not
involved in the early fusion.

Of the late fusion mechanisms, SVM and BBR based fusion
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Fig. 2. Comparison of algoritms for selecting detectors for geometric mean
fusion for four diffent sets of detectors. The bars with diagonal hatching
correspond to algorithms with early stopping.

were significantly outperformed by geometric mean based
fusion in the 2:1 validation experiment. Moreover, the SVM
and BBR fusion mechanisms were computationally much
more costly. Consequently the mechanisms were not used in
the actual HLF detection runs. Figure 2 compares different
geometric mean based fusion algorithms for the late fusion
tasks of the runs PicSOM.{A,B}-ngram and the additional
runs A2 and A4 (cf. Section III-B). We see that geometric
mean of all detectors (leftmost bar) is always inferior to
methods where set of detectors is selected with sequential
forward/backward search (SFBS). This has not always been
the case as SFBS easily overfits to the training data. This
tendency might get pronounced when the training data is not
actually similarly distributed as the test data, as probably is
the case with the TRECVID HLF develeopment and test data.
The figure also shows that multifold-SFBS performs better
than basic SFBS. Early stopping seems to have no essential
effect on the average performance. It may, however, increase
variance of the results. Early stopping is not a proper way to
regularise SFBS.

On average, we could not exploit cross-concept co-
occurrence for our advantage when selecting the set of SVM
detectors that were fused, although some of the runs utilizing
cross-concept fusion were chosen when forming the compos-
ite runs PicSOM.spec-ngram and PicSOM.spec-any.
However, here the experiment was not controlled in the sense
that the property of runs using cross-concept fusion was mixed
with other properties of the runs, such as the SVM training
strategy. On the other hand, although the cross-concept runs
seemed attractive for these particular HLFs in the validation
experiment, no clear advantage for the cross-concept runs over
the other runs for the same HLFs was repeated in the test set.

Should one expect to benefit from instantaneous cross-
concept co-occurrence? In the limiting case with enough train-
ing data and flexible enough learning algorithms to accurately
approximate the conditional probabilities involved, the answer
is negative as long as the training data is fully annotated and
all the concepts are detected based on the same visual features.

The situation is the detections for different concepts come
from independent sources. In the practical case with limited
training data and learning algorithms, there probably is no
general guarantee to one direction or another.

For non-instantaneous cross-concept occurrence the situa-
tion is somewhat different if the dependency occurs outside the
temporal window whose shot features are used for the concept
detection. For example, in our case the temporal window is just
one shot, i.e. the concepts are detected based on the features of
a single shot only. In principle, we could therefore be able to
benefit from non-instantaneous cross-concept co-occurrence.
For example we could be able to learn rules of type

If Concept1 at time n,
then Concept2 at time n+1 with p=0.8

through the temporal smoothing included in the two-stage
cross-concept fusion algorithm.

In the experiments, however, we did not observe benefit
from the use of the two-stage algorithm. There are several
possible explanations. It is possible that there simply are
no such non-instantaneous cross-concept dependencies in the
TRECVID HLF annotations that could be exploited. On the
other hand, we might have not been able to learn such
dependencies reliably from the training data due to limited
amount of independent training examples. Although the 2009
development data for the HLF task consists of over 36000
shots, there are not that many independent temporal depen-
dency pattern examples. The number might be closer to the
number of videos, which is just 219 for the development
data. It is also questionable whether the temporal dependency
patterns are similar enough in the training and test data in
order to be exploited in a straightforward fashion. One more
likely explanation is the crudeness of our fusion algorithm. In
practice, it assumes all the input variables (detectors) to be
symmetric in terms of the way they affect the outcome. For
example, the detectors’ output can not be weighted or have a
negative influence on the fusion outcome, not to mention more
complex non-multiplicative dependencies.

Figure 3 shows the effect of temporal post-processing for the
systems of the submitted SVM runs. The darker bars indicate
the runs that were submitted. The lighter bars correspond to
additional runs we evaluated ourselves. We can observe that
the n-gram post-processing of the submitted runs improves
MIAP markedly over the baseline with no post-processing.
For the submitted runs, the n-gram order was selected for
each HLF separately based on the 2:1 validation experiment.
This was not a good choice for strategy. We would have
done better if we had chosen the n-gram order globally for
each run and used it for all concepts. This may indicate
that our validation setup was inadequate: maybe a better use
of the training data could have been obtained with a more
elaborate cross-validation setup. On the other hand, there
might simply be too few independent temporal patterns in the
training data, just as argued before. Similarly, the explanation
of different temporal patterns in training and test data might
be valid also here. This is supported by the anecdotal piece



0.1000

0.1050

0.1100

0.1150

0.1200

0.1250

0.1300

0.1350

0.1400

0.1450

0.1500

0.1550

0.1600

none
n-gram
n-gram 
(global)
any

M
IA

P

A B E spec-ngram spec-any

* *

*

*

*

Fig. 3. The effect on temporal post-processing in several different runs. The
bars marked with an asterisk correspond to submitted runs.

of evidence that in many cases the validation experiment
failed to indicate the usefulness of n-grams for concept 1016
(people dancing), although in the test data n-grams hugely
improved the detection accuracy (IAP from 0.107 to 0.312 for
PicSOM.A-ngram).

Afterwards, we tried replacing the n-gram description of the
temporal neighbourhoods with simpler descriptions, the counts
of occurrences of a HLF in the same n-step neighbourhoods.
The resulting detection accuracy was slightly better but still
almost identical for all HLFs in the 2:1 validation setup.

After the submission time, we tried forming rank-
based fusions of a few different combinations of the runs
PicSOM.{A,B,E}-ngram and A1–A4. The fusions runs
were better than any of the individual runs involved, but
slightly worse than the speculative selections in the style
on run PicSOM.spec-ngram. This shows that the 2:1
validation experiment was able to reveal genuine differences
between different HLFs afterall, not all the differences were
statistical fluctuations. Fusion based on detector outputs would
probably have worked better than fusion based on rank.

IV. AUTOMATIC SEARCH

For the search task, we submitted ten automatic runs sum-
marized in Table III. All runs were submitted to the standard
search task and were trained only on common TRECVID
development data, thus qualifying them as type A runs.

A. The submitted and additional runs

Run 1 is a baseline run with only text-based search using the
Lucene ASR/MT text index and the topicwise textual queries.
Run 2 is the visual baseline, which uses content-based retrieval
based on the SOM feature indices. This is the same baseline
system that we have used in previous years (see e.g. [2], [3]),
except for a different set of features used this year, viz. Color
SIFT (ip), Color SIFT (dense) and SIFT (ip). Run 2 was
used in runs 3, 5, 7 and 9 for topics for which no matching
concepts could be found. The run 2b is a combination of visual
content-based retrieval and text-based search. This run was not
submitted as such, but was used in runs 4, 6, 8 and 10 for
topics for which no concepts could be matched.

The other runs all use concept matching, as using HLF de-
tectors has been observed to consistently surpass the retrieval
performance of content-based retrieval in previous TRECVID
experiments [3], [13]. In these experiments, we apply both
text-based and example-based concept matching for different
sets of HLF detectors. However, if no concepts can be found
for a particular search task we have used the baseline visual
(run 2) or visual + text (run 2b) as appropriate. This secondary
use of visual examples is shown with a “◦” in Table III. The
concept matching procedure is described in more detail in
Section IV-C.

Run 3 uses a set of 30 of our own concept detectors (own
set) trained as described in Section III. We used the B-ngram
method, which had the highest MIAP score for HLF detection
in the development set. Of these, 20 were the ones submitted
in this year’s HLF detection task, and the remaining 10 were
the concepts used in 2008 but not this year.

These concepts were selected in two ways: by matching
with the provided visual examples of the search topics, and
by automatic detection of relevant words in the search queries.
To illustrate the effect of both selection methods, we created
two additional runs: Run 3b was performed using only word-
based selection (marked by ‘W’ in Table III), and 3c with only
visual example based selection (marked with ‘E’ in the table).

The runs 5–10 use also the donated set of concepts,
which contains concepts from the set of 64 concepts shared
by MediaMill (MM) this year [14] and from the 374 CU-
VIREO374 [15] (CU) concept detectors.

Runs 5–8 use the primary matching scheme, where initially
the MM concepts are matched to the textual query and CU
concepts are then matched for such words for which no MM
concepts were found.

The additional run 8b is based on run 8 but with some modi-
fications in concept selection (marked with “•?” in Table III).
First, we included those concepts from the donated set that
had been selected based on the visual examples in our own
set. That is, if a specific concept was selected purely by visual
examples from our own set of concepts, e.g. cityscape for topic
0269, the corresponding concept from MediaMill would be
added in this run. The run also includes some retrospective
changes in the concept selection, as some obvious errors
were corrected manually. We also assigned to all duplicated
concepts a weight of 0.5, and gave the concept person a lower
weight to reflect that it is a very generic concept.

In runs 9 and 10, we include all matched donated concepts.
This means that for many words there will be duplicates,
i.e. concepts matched from both the MM and the CU sets.
This selection method is illustrated with “•+” in Table III.

B. Text search

For text-based search, the topic-wise English queries were
analyzed using the Stanford part-of-speech (POS) tagger [16].
The nouns, verbs, and adjectives of each query were used as
the text search queries, expanded with synonyms using the
WordNet [17] package included in the Lucene search engine.



TABLE III
AN OVERVIEW OF THE SEARCH TASK RUNS. SEE TEXT FOR DETAILS.

concepts
# run id text visual own donated MAP
1 F_A_N_PicSOM_1_10 • 0.0042
2 F_A_N_PicSOM_2_9 • 0.0093
2b additional run • • 0.0095
3 F_A_N_PicSOM_3_8 ◦ • 0.0395
3b additional run ◦ W 0.0295
3c additional run ◦ E 0.0345
4 F_A_N_PicSOM_4_7 • ◦ • 0.0400
5 F_A_N_PicSOM_5_6 ◦ • 0.0849
6 F_A_N_PicSOM_6_5 • ◦ • 0.0854
7 F_A_N_PicSOM_7_4 ◦ • • 0.0910
8 F_A_N_PicSOM_8_3 • ◦ • • 0.0913
8b additional run • ◦ • •? 0.1030
9 F_A_N_PicSOM_9_2 ◦ • •+ 0.0729
10 F_A_N_PicSOM_10_1 • ◦ • •+ 0.0745

The ASR/MT documents were used on the shot level.
The shot-level retrieval results were spread to the temporally
neighboring shots using a triangular kernel of five shots in
width.

C. Semantic concept matching

In runs 3–10, the search topics were matched with the
semantic concepts using word matching. For each concept,
a word list was generated by taking the concept name itself
as the initial word or words and expanding with WordNet
synonyms. These lists were then cleaned up by hand (without
knowledge of the particular search topics). For example, words
with too broad meaning were removed, e.g. the concept
people dancing was set to be activated for the word “dance”
but not for “people” appearing in the textual query.

In addition, our own concepts were also matched by using
the visual image and video examples given with each search
query. This was done using a similar method as the HLF run
PicSOM.A-ngram (excluding the temporal post-processing)
so that for each example image or video we get a matching
score for each concept. The scores were fitted to a logistic
sigmoid model to be able to map them as probabilities. These
were then summed up over all examples for each search query
so that we end up with a matching score for each concept to
that particular query. Then for each concept we select those
search topics for which the score is more than six times larger
than the median score for that concept. This heuristic limit
was selected by two rules of thumb: we wanted the number
of concepts selected per task to be on average close to one.
The second rule of thumb was that there shouldn’t ever be
more than three concepts selected for a single topic, since
from experience a small number of concepts per topic seem
to work the best.

Table IV summarizes the selected concepts. The first column
shows the topic number, the second our own concepts selected
by visual example matching. The third column shows those of
our own concepts selected by word matching. Roughly 40% of
the concept selections were added due to the visual matching

only, i.e. they would not have been found using only word-
based selection.

The forth column in Table IV shows the concepts selected
with the primary matching scheme from the donated set
(i.e. as used in runs 5–8), using only word-based selection.
These are mostly from MediaMill, those from CU-VIREO374
are prefixed with CU-. Due to an error in our word-based
selection the concept CU-Talking was inadvertently selected
for the search topic 0271. Also, in the topic 0276 the concept
person walking or running was inappropriately selected for
a query about dogs running. For topics 0280 and 0285 no
concepts could be selected. For these runs we used the visual
or visual + text baselines as appropriate.

D. Results

As can be seen from the overall results in Table III, the
best performing submitted run used the combination of our
own concepts and the donated set of concepts (run 8). In this
run our own concept detectors were selected by both word-
matching and based on the visual examples. The additional
concepts were selected only based on word-matching.

The unsubmitted run 8b obtained a rather notable improve-
ment, but it includes some additional HLF detectors from the
donated set and some additional weighting done in retrospect,
and some manual corrections. Therefore, this run cannot be
directly compared to the other automatic runs. However, with
a future improved automatic word-based selection this result
might be achieved.

The use of visual-example based matching of concepts was
very beneficial, especially using only our own concepts. This
is illustrated by the success of run 3c compared to 3b. Using
both ways of selecting concepts together gives an even better
result (run 3).

We can also observe that although the text search performed
quite badly (run 1) on its own, it still always improved the
results in combination with the other methods.

The topic-wise results are summarized in Figure 4. For a
more concise visualization we have omitted the concept-based
runs without text-search since the text-search consistently
improved the runs by a small amount. We have also omitted
runs 9–10 since they performed relatively worse and don’t
provide much useful comparison. The bars are thus in the
following order: text-baseline (run 1), visual-baseline (run
2, darker bar), own set of concepts (run 4), donated set
of concepts (run 6, dark), own + donated concepts (run 8)
and finally unsubmitted run 8b (dark). In run 8b, the great
improvement in topic 0276 is due to removing the concept
people walking or running which was incorrectly selected by
the automated selection.

V. CONCLUSIONS

In the experiments reported in this paper, we utilized the
SVM-based concept classification approach for HLF detection
and used these detectors in automatic search.

In HLF detection, we applied a fusion-based general system
architecture, which considers a large number of potential SVM



TABLE IV
CONCEPT SELECTION

query own concepts (by examples) own concepts (by words) donated set
0269 Cityscape, Driver, Street Street Road, Street, CU-Vehicle
0270 Demonstration Or Protest Demonstration Or Protest Crowd, Demonstration Or Protest, Person, Outdoor
0271 Cityscape, Bridge (CU-Talking), Building
0272 Telephone Telephone Person, Talking, Telephone
0273 Hand Hand Hand, Charts
0274 Two People Chair Two People, Person, Chair
0275 Doorway Person, Walking Or Running
0276 Dog, Walking Or Running
0277 Person, Talking, CU-Microphones
0278 Doorway, Street Doorway Building, Doorway
0279 Hand Person, CU-Handshaking, Hand
0280
0281 Playing Musical Instrument, Singing Playing Musical Instrument, Singing Two People, Person, Singing, Playing Musical Instrument
0282 Person
0283 Playing Musical Instrument Playing Musical Instrument Person, Playing Musical Instrument
0284 Nighttime, Emergency Vehicle Cityscape, Street Cityscape, Road, Street, Nighttime
0285
0286 Demonstration Or Protest Explosion/Fire
0287 Person, Computer/TV
0288 Airplane flying, Boat Ship, Bridge Airplane flying Airplane, Airplane Flying, CU-Helicopters, Outdoor
0289 Chair Person, Chair, CU-Talking
0290 Boat/Ship, Harbor Boat/Ship Boat/Ship, Waterscape
0291 Outdoor
0292 Female human face closeup Female human face closeup Female human face closeup

classifiers trained with different image and video features. This
is followed by a post-processing stage utilizing the concepts’
temporal and inter-concept co-occurrences. The results were
rather promising and largely as expected. In particular, the
SVM-based detectors obtained, expectedly, large accuracy im-
provements over the SOM-based baseline. We also performed
a large set of experiments to be able to compare a variety
of detector components in a systematic fashion. However,
the detector-wise fluctuation in the results is so strong that
we analyzed the components only using the averaged results
which we consider to be more reliable.

In automatic search, the results again validate our earlier
observations [13] that high-quality semantic concept detectors
can be a considerable asset in automatic video retrieval. The
mapping of concepts to queries is equally important, but how
to do this optimally remains, however, an unresolved problem.
In this work, the mapping of concepts to search queries
was performed using the visual examples and a relatively
naı̈ve lexical matching approach. Using the visual examples
works reasonably well, at least with the current concept on-
tology sizes, but a single-word-based lexical concept matching
scheme is clearly insufficient.
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