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ABSTRACT 

We studied two methods for the high-level feature extraction (HLF) task: (1) a method based on support 

vector machines (SVMs) with walk-based graph kernels [1], and (2) a method based on the prefixspan 

boosting (pboost) algorithm [2]. In the former method, each image is first segmented into a finite set of 

homogeneous segments and then represented as a segmentation graph where each vertex is a segment and 

edges connect adjacent segments. Given a set of features associated with each segment, we then obtain a 

positive definite kernel between images by comparing walks in the respective segmentation graphs, and image 

classification is carried out with an SVM based on this kernel. In the latter method, discriminative image 

subsequence patterns are mined using pboost, and used for image sequence classification. We submitted four 

runs using the former method with several combinations of the SVM scores with different kernel and SVM 

parameters, and two runs using the latter method with different amounts of training data. 

 

1. INTRODUCTION 

The HLF task can be regarded as a set of supervised binary classification tasks, where each shot must be 

assigned a set of binary labels to indicate whether or not it belongs to each concept class. Unlike more 

specific tasks such as face or character recognition, the emphasis in HLF is on obtaining generic and versatile 

automatic tools that can learn any concept from a set of examples belonging to the concept class. 

For the HLF task, we investigate two strategies: (1) a conventional strategy using a keyframe image 

extracted for each shot and applying a method based on SVMs with walk-based graph kernels, and (2) a 

strategy using a shot image sequence and applying a method based on pboost. 

 

2. SVM-BASED METHOD WITH WALK-BASED GRAPH KERNELS 

In this method, each image is first automatically segmented into a finite set of “homogeneous” segments and 

then represented as a segmentation graph, where each vertex is a segment and edges connect adjacent 

segments. A set of features such as size, color, and texture are associated with each segment. Using this 

graph-based representation, we apply a graph classification method to classify the images. More precisely, we 

investigate the use of graph kernels in combination with support vector machine (SVM) classification. 

Figure 1 shows three steps of our method for HLF: (i) image segmentation, (ii) kernel calculation, and 

(iii) SVM classification. In (i), each input image is automatically segmented and represented as a 

segmentation graph, as explained in Section 2.1. In (ii), a walk-based positive definite kernel between 



segmentation graphs is computed, as explained in Section 2.2. Finally, HLF treated as a set of binary 

classification problems is performed with an SVM using the walk-based kernel between segmentation graphs 

to classify images. 

 

2.1. Graph-based representation of images 

The first step of our approach is to automatically split each image into a variable number of homogeneous 

regions, using an unsupervised segmentation method [3], as in Figure 2. The image is then represented as a 

segmentation graph, i.e., a simple graph G = (V, E), whose vertices V are the segments obtained by automatic 

segmentation and whose edges E connect vertices corresponding to adjacent segments of the image. The 

number of vertices (i.e., of segments) depends on the image. Furthermore, each segment is characterized by a 

set I of 23 features presented in Table 1. The 12 texture features (nos. 12–23) are the responses to a small 

filter bank of orientation and spatial-frequency selective linear filters [4]. For each segment v V of a 

segmentation graph, we denote by F(v) = (fi(v))i I R
I the vector of the features (23-dimensional in our case). 

 

Figure 1. Overall procedure of our method. 

 

Figure 2. Example of segmented image from data set of TRECVID2005. 



Table 1. Features characterizing each image segment. 

Feature no. Description 

1 Average x 

2 Average y 

3 Area in pixels 

4 Boundary length divided by area 

5 Second moment of area 

6–8 Average red, green, blue (RGB) intensities 

9–11 Standard deviations of RGB intensities 

12–23 Texture features 

2.2. Walk-based graph kernel 

The walk-based graph kernel is defined hierarchically [5-11]. First, a walk w in a graph G = (V, E) is defined 

as a finite sequence of connected vertices, i.e., w = (v1, ..., vl) with Vvi   for i = 1, …, l and Evv ii  ),( 1
 for i 

= 1, …, l. Here, l is called the length of walk w. We denote by Wl(G) the set of walks of length l in G. 

Second, positive definite kernels between vertices are defined. For any vertices in two graphs v1   V (G1) 

and v2  V (G2), we define a kernel between v1 and v2 as a kernel between their respective features, e.g., a 

Gaussian kernel: 
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Given two walks of length l in two graphs w = (v1, ..., vl)   Wl (G) and w’ = (v’1, ..., v’l)   Wl (G’), a walk 

kernel between w and w’ is defined as the function: 
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Then, the walk-based graph kernel of depth l between two graphs G and G’ is defined as 
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It should be noted that if l = 1, no adjacency information is taken into account in the kernel. An image is then 

considered to be a “bag-of-segments”, and the kernel between two images is simply the sum of the vertex 

kernels between all possible pairs of segments. When l > 1, the adjacency information is taken into account.  

Finally, we define the walk-based kernel as the sum for multiple depths l = 1, …, L between two graphs G 

and G’ as 




 
L

l

lSUML GGKGGK
1

)',()',( . (4) 

We implemented the walk-based graph kernel using a recursive process, as explained in [7]. Since this 

kernel is positive definite, we can perform image classification with an SVM using the kernel on the 

segmentation graph representation of the images. 

3. PBOOST BASED METHOD 

Nozowin et al. [2] proposed a method “pboost” for action classification in videos, using discriminative 

subsequence mining, which uses the prefixspan algorithm by Pei et al. [12] to find optimal discriminative 



subsequence patterns, in combination with linear programming boosting classifier. The idea of boosting 

classifiers is to combine multiple weak classifiers into a powerful composite classifier. In pboost, the presence 

of a single discriminative image subsequence pattern  in a shot is checked by weak hypotheses, which have 

the form h(x; s, ω), where x ∈ {xi} i = 1, ..., n , xi is a shot image sequence, s ∈S is a image subsequence, S is a 

set of all subsequences of {xi} i = 1, ..., n, and ω ∈ Ω, Ω = {−1, 1} is an extra variable that allows to decide for 

either class decision. The classification function has the form: 
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where αs,ω is a weight for image subsequence s and parameter ω such that 1
),( ,  Ss s   and αs,ω ≥ 0, 

which indicates the discriminative importance of a image subsequence pattern. 

The primal form of the training problem is: 

0,0,1

,),;( : s.t.

min

),(

,

,

),(

1
,,



















ξα

α

Sws

s

iis

Sws

i

n

i

i

sxhy

D













                                                                                                            (6)

 

where yi∈{1,−1} is a class label, ρ is the soft margin separating negative from positive samples, D = 1/νl 

and ν ∈ (0, 1) is a hyper-parameter controlling the cost of misclassification. We expanded pboost to deal 

with unbalanced amount of training samples by using different cost weights for positive and negative samples.  

       For pboost, a sequence type is constrained to be an ordered sequence of sets of discrete numbers. Here we 

first clustered all the segments which are denoted as 23-dimensional vectors (as explained in Section 2.1), and 

then represented each image using a set of cluster IDs which correspond to all segments in the image.  

 

4. DESCRIPTION OF OUR SUBMITTED RUNS 

We submitted four runs using SVM based with walk-based graph kernels and two runs using pboost method. 

For SVM based with walk-based graph kernels, we used 36,262 keyframes in the TRECVID 2008 

development data set for training and put the annotations by ourselves. We conducted 3-fold cross validation 

experiments to find relevant combinations of the values of  = 8, 16 in eq. (1) and the penalty parameter of 

the error term C = 0.001, 0.1, 1, 10, 100 in SVM.  We set I = [1, 23] and L = 5 for the walk-based graph 

kernel. The four runs are: 

[A_ISM1_1]  use of the SVM scores for the best combination of values of    and C  for each  feature, 

[A_ISM2_2]  use of the SVM scores averaged for the top two  combinations of values of    and C   

for each feature, 

[A_ISM3_3]  use of the SVM scores averaged for the top three  combinations of values of    and C  

 for each feature, and 



[A_ISM4_4] use of the SVM scores for common values of  =16 and C=1 for all features. 

The third run performed the best and the inferred AP was 0.031 on average (figure 3).  

       For pboost method, we utilized the pboost sequence boosting toolbox[13]. Due to the computation cost 

and the submission deadline, we selected 5,000 or 10,000 training shots for each feature so as to have almost 

the same ratio of the numbers of the positive and negative shots for each feature. We also constrained the 

maximum length of image subsequences to three. The inferred APs with 5,000 training shots are shown in 

figure 4 and the average AP was 0.017. 

       

Figure 3. Inferred APs of SVM based method with walk-based graph kernel using the average score  

for the top two combinations of   and C values through cross-validation. 

 

Figure 4. Inferred APs of pboost based method with 5,000 training shots. 

 

5. CONCLUSIONS 

In this paper, we described our HLF methods using the walk-based graph kernels and the pboost algorithm.  

For the TRECVID 2008 HLF task, the inferred APs of our method with the walk-based graph kernel were 

close to the median scores of the TRECVID 2009 HLF results.  Our future work includes expansion of the 

pboost algorithm to reduce the computation cost and effective use of the image sequence information. 
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