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Abstract

This notebook paper presents the systems presented byfieleResearch within the MESH team for the task
of Video copy detection in TRECVID 2009. We patrticipated e tvideo-only, Audio-only and Audio+Video tasks.
Our main contribution is the combination (when possiblepoflio and video features within the same system by
using global features extracted both from the referenceosddand the queries. We also experimented with SIFT-
based search methods and are aiming at building a hybridtsegstem. This is our first participation year and
results are far from optimal, but some of them indicate theiptial of the presented systems.

. INTRODUCTION

In today’s digital world, efficient multimedia data managatools are a need, in order to organize and search
the vast amounts of video content that not only is generaaélg ut in many cases is made available to the public.
Increasing storage capabilities at low prices enable tlebivaal of most of this multimedia content, including
professional TV broadcasts and internet video servieas,(Web-TV, video blogs, video sharing sites, public video
archives, etc.) which contain both professionally gersstatideos and user generated content (UGC).

The detection of video duplicates in a video database is btleedkey technologies in multimedia management.
Its main applications include: (a) storage optimizatidmy ¢opyright enforcement; (c) improved web search and
(d) concept tracking. In storage optimization, the goaloi®liminate exact duplicate videos from a database and
to replace them with links to a single copy or, alternatiydityk together similar videos (near duplicate) for fast
retrieval and enhanced navigatio®|.[ Copyright enforcement strives at avoiding the use andispaof illegal
copies of a copyright protected video. In the context of webrsh, the goal is to increase novelty in the video
search result list, by eliminating copies of the same vidiexd inay clutter the results and hinder users from finding
the desired content?]. Finally, concept tracking in video feed®][focuses on finding the relationship between
segments in several video feeds, in order to understancethparal evolution of, for example, news stories.

Traditionally, watermarking techniques have been usedtted copies in images, audio or vided, [[?]. These
techniques insert information (watermarks) into the medat is not noticeable by the user and that is later used
to proof the authenticity of the media. One limitation ofstliipproach is that the watermarks need to be included
when generating the material, which is typically not theeciasUGC. Alternatively, Content-Based Copy Detection
(CBCD) techniques do not add any watermarks into the medighe@media itselfis the watermark.

CBCD techniques analyze the content in order to extract afsitatures that are then used to compare it with
putative duplicates. In this paper, we focus on the deteatioNear-Duplicate Video Clips (NDVC) via a novel
multimodal CBCD algorithm.

The application of CBCD algorithms to videos has been ugupbroached from a video analysis perspective,
by extracting and comparing features from the videos. Léeaures, typically computed at a key-frame levg| [

[?], achieve good performance at high computational costve@sely, researchers have also investigated the use
of global features (7], [?]), extracted from low level features in the video, to confoa fingerprintor signature
of the video. Video fingerprints allow for fast video comganmns at the expense, however, of lower performance.

This year's TRECVID evaluation on the task of video copy détae has been our first participation. For it
we propose two different systems: on the one hand, a pureliimaoaal approach which takes global features as
input for a cross-correlation-based algorithm that fuseth laudio and video streams to find segments in the query
that might appear in the reference videos with a certain aividty. We call this algorithm Change-Based Copy
Detection as it only takes into account the changes withinabnsidered streams. On the other hand we present



results of an approach using SIFT local features and our aaviat of a search engine based on Hierarchical
Vocabularies of Visual Words. The SIFT-based algorithm wasking over keyframes extracted with a simple shot
boundary detection algorithm, for the task of video-onlpyaetection.

II. TRECVID PROPOSED SYSTEMS

For our first participation in the TRECVID evaluation for thesk of video copy detection we have prepared
two different systems for the tasks of video-only, audiaed and audio-only copy detection. For the video-only
task we submitted two systems, a cross-correlation basgtdrayusing global features and a SIFT-Based system.
For the audio only task we presented the same cross-caorelaased system, but this time only based on audio
global features. Finally, for the multimodal task we praedrthe cross-correlation based system using both audio
and video features. Next we describe the feature extraatiotules for each one of the used features and the two
different systems description.

The following summarizes the main characteristics of eacbus submissions:

« MESH.v.*.xcorr: Video only submission using global features and a crosseladion based algorithm

« MESH.v.*.xcorrTime : Video only submission using global features and a croseetagion based algorithm.
Instead of outputing the algorithm’s matching time, allereihce video’s time was considered to match.

« MESH.v.*.sift: Video only submission using local features.

« MESH.v.*.siftNoTime: Video only submission using local features. Same timek tais above

« MESH.a.*.official: Audio-only submission using a cross-correlation basgdrihm

o MESH.m.*.multimodal : Audio+Video submission using a cross.correlation badgdrithm with multimodal
features.

[Il. VIDEO CoPY DETECTION FRONT-END
A. Audio Global Signature Extraction

The global audio signature is extracted by analyzing theustoto changes that take place in the audio track of
the video. A one dimensional signal is created from the aaidiok whose minima correspond to places where
there is a change in the speaker or in the sounds being retorde

First, video and audio tracks are separated into indepemstierams. The audio track is down-sampledG&Hz,

16 bits/sample and converted #d Mel Frequency Cepstrum coefficients (MFCC), including ¢eps derivatives,
acceleration and energy, computed evebymilliseconds. These features are typically used in speeasbegsing
and acoustic segmentation techniques. In particular, weethus Bayesian Information Criterion (BICY][as the
basis to obtain a measure of how similar the audio is in bathssof the analysis frame (and hence whether there
is a change in the audio signal or not).

In our present work, BIC is used as proposed Byf¢r acoustic segmentation by computing the acoustic metri
for frame: as:

ABIC(i) = log L(X[i — W,i + W]| M)
—log L(X[i — W,i]|My) — log L(X[i,i + W]| M)

where X [i, j] is ann-dimensional sequence corresponding to the MFCC featuttescéed from the audio segment
from time ¢t = i to t = j; M, q are three Gaussian Mixture Models (GMM) composed of a weigtgum

of Gaussian Mixtures, such that the number of Gaussian® jrand M, is the same and half of the number of
Gaussians inV/,;; andW corresponds to the analysis window, sel® MFCC frames (one second of audio). The
ABIC acoustic metric is computed evetg0 milliseconds in a sliding window along the input signal, ahbtng

an acoustic change signature with points for every second of video, which accounts fab. 86kbps signature
stream. Figur@?a shows an example of th® BIC' acoustic change pattern extracted far78 second long video.
The local maxima in the plot represent places where the sndiag audio is maximally similar. Conversely, the
local minima represent acoustic change points; small abamgthin the same acoustic condition (positive value)
or large changes from one acoustic condition to anotherafivegvalue).
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Fig. 1. Examples of the proposed signatures foi@ sec long video.

B. Video Global Signatures Extraction

The global video signatures are extracted by consideriaggimporal visual changes occurring in the video. Three
features are extracted (hue, luminance and highlights@édntariation) from which two signatures are generated
that are fed to the fusion module, where they are combineld thi¢ audio signature, in order to make the final
comparison with the reference video.

1) Picture-in-Picture Extraction AlgorithmPicture in picture (PIP) videos are processed in a two passara
first, analyze the whole video for possible PIPs; secondthmeranalysis algorithm on the video, either on the full
video if no PIP was detected, on the full video except for th fegion, or only on the PIP region. In this section
we will describe the PIP detection part.

Only a subset of frames are analyzed for possible PIPs,the.yvideo is temporally down-sampled in order
to improve detection time. This jeopardizes the detectemporal accuracy, of course. In order to detect the
rectangular regions that form our PIP we first apply a Canmgeeatktector to the video frame being analyzed. We
follow this by a probabilistic Hough transform, since it isora efficient if the picture contains a few long linear
segments, which returns line segments rather than whae.lin

In a blank, imagdinelm(n) for frame n, all the detected lines that are either completettical or completely
horizontal are plotted. Each frame generated this way isiraatated on an intermediate imagm(n): im (n)=
(im(n-1) +linelm(n)) which is later normalized tam(n) = Im(n) * 254/max(Im(n))This image is then projected
on both axes, generating a line density function which mayded to identify the temporally strong vertical and
horizontal lines.

In order to reduce the false alarm rate, we analyze this gtiojes only in the most likely segments to include
a PIP (we have specific segments for each of4to®rner PIPs and also for the central one, based on the trecVid
2008 data). Each of the projections (horizontal and verticalhisn analyzed within those likely segments for the
peak (max) in the density function and its position. The adisor is also calculated within that segment.

In this way we can calculate BeakToNoiseRatjavhich is one of the two parameters used for PIP detection
below: PeakToNoiseRatio = max(segment)/ noiseFl&aich of these peaks defines either a vertical column or a
horizontal row in theim(n) image. These columns/rows are analyzed for their centeraviity, which will further
confirm to which PIP quadrant or center they belong. This isutated as a percentage of either the width or
height of the video frame. The final condition, which must bet ftoy the4 lines composing the PIP box, in order
to have positive PIP detection is:

PeakToNoiseRatio ¢, thresholdl AND abs( centroid - Q) i tho&2

WhereQ is either25%, 50% or 75% of the width or height, depending on which PIP position isngeanalyzed.
For each analyzed frame, the coordinates of the detectedbddRare saved, otherwise a NDETECTION code
is output.

2) Hue and Luminance Variation (HLV)The first descriptor of video variation consists of the chaiygcolor
and luminance, in a similar way as the audio signature. Tysaach has been proposed in the past by Hoad and
Zobel [?], where they considered all color channels (YCrCb) in orgedetect video variations. Note that direct
comparison of video signals is avoided by using ¢thangein color and luminance, instead of the color itself. The
authors show that only two channels (Hue and Value) are meiederder to detect near duplicates. Therefore, we
first convert the input video signal to the HSV (Hue, SatamtiValue) color space. Next, we compute the Hue



and Value histograms at each framg, and compare them with the histograms from the previous frarseg a
simple histogram intersection measure:

M .
1, H,, ) = 2=t M (), B, (1) @

S22 Ha, (1)
where M is the number of bins in the histograms. Note tlhat 100% implies no change at ali,e., exactly the
same video frame, and= 0% implies maximum changeég., in checkerboard type images, changing from white
to black.
The comparison is performed on a frame by frame basis withayttemporal down-sampling. Therefore, this
technigue allows to track typical consumer camera vanatihat expand over multiple frames:

« Auto white balance, which adapts to the light source illuatimg the scend.€., so that white will be rendered
white independently of the illuminant);
« Auto contrast and auto levels, which adapt to the amountgbft lin the scene and its distribution.

Figure ??b depicts an example of the combined Hue and Value changarésafor al73 sec long video.
Sudden drops in this histogram intersection plot indicaene changes, while ramps indicate fade-in/outs or other
progressive changes.

3) Highlights and Shadows Centroid Variation(HCV and SCVhis descriptor tracks the highlights (areas of
high luminosity) in the image, since the motion of high lumsity areas should be very similar between a video and
a transformed version of it. This feature was first proposgf?in conjunction with a shadow centroid variation
feature (areas of low luminosity).

We describe the Highlight Centroid Variation below. The &ha Centroid Variation would be calculated in a
similar way, by analyzing at the dark pixels in the video feam

The image is first down-sampled by a factor8pfoth in the horizontal and vertical dimensions. A histograf
the Value channel is computed and the 1®86 pixels in the histogrami.g., brightest pixels) are used to calculate
the highlight centroid. The centroid is normalized to thagtinal of the frame, in order to be resilient to size
change degradations in any of the axes (both horizontaloanftical). The centroid of the highlight region is
then compared to the centroid of the highlight region from pevious frame. The change in the centroid position
from frame to frame is calculated in absolute value, in ontdebe resilient to the horizontal flip of the entire (or
part of the) video clip.

Therefore, this descriptor (see example in Figd®e) tracks the movement of the highlight centroid from frame
to frame in absolute numbers. If the highlight region reraatatic from frame to frame, this will result in zero
absolute change; if it pans slowly, say from left to rightwitl generate a roughly constant value; and if there is
a scene cut, it will typically generate a high peak at the framhere the cut takes place.

C. Audio/Video Global Signatures Postprocessing

Once the audio and video signatures have been extractedatkepost-processed in order to obtain signals
that are better suited to be used by the matching algorithmasepted below. A different processing is applied,
depending on the signal involved.

The audio signature contains most of the fingerprintingrimfation in the low frequencies, with a high frequency
component which is basically noise. Therefore, a low passr fis applied using a moving average window with
width of four frames, centered in each frame. The same filjers applied to the highlights centroid variation
(HCV) signature.

Conversely, the hue and luminance variation feature (HL&f)itains the fingerprinting information in the peaks
of the signal, indicating the points where a change of scappéns. In this case, the a derivative filter is applied
(after computing the absolute value of the signals) usiregftiiowing regression formula:

S0 izl + i) — xln — i])
T ?

!Described as one of the transformation types in the MUSCIGD\tataset.

Z filtered [n] =



where z[n] is the hue or luminance variation feature at frameand © = 2. This filtering does a windowed
differential sum for each point where the further the samjfie time), the larger their weight.

All feature streams are then normalized to zero mean ang waiance. Finally, as will be seen in the next
Section, the number of samples extracted per second in teowihannel is larger than in the audio channel.
Therefore, the audio signature is warped to fit the videoatige by means of a linear warping.

D. Local SIFT Features extraction

In the submitted run using local features these were eemagsing Scale Invariant Feature Transform (SIFT)
[?]. However it should be noted that the approach can provieéasi or better performance when used with other
local feature extractors such as for example Speeded UpSRélmatures (SURF)?].

In order to extract local features from selected keyframath lin the reference and query videos we built a
simple (yet pretty effective) shot-boundary detectionoathm. The algorithm works as follows:

1) Retrieve/compute all three available image/based featffom the video being considered, normalize them

to unit variance and zero mean and compute their averageaistogle signal.

2) Apply a threshold find all peaks in the averaged signalyeng that there is at least a distance of five values

(equivalent to5 video frames, on/5 second) between two peaks.

3) Extract a keyframe from the central location in each segrmemprised between two adjacent peaks. If the

segment length is greater thaf seconds, extract several keyframes split along the segment

Once the keyframes are extracted, the SIFT features areutethpsing the VLFeat open source librarin all
experiments we used the SIFT extraction tool with defaulies of all input parameters.

IV. QUERY MATCHING ALGORITHMS
In this section, we describe the two query matching algorittused in the Trecvid evaluation.

A. Cross-correlation based video copy detection

The cross-correlation based video copy detection algaralows finding sequences inside the query that match
a given video in the reference database. The result of treitig is a start-end times in the query and reference
videos with possible match, and their matching score.

Once the audio and video signatures have been extractedtfiemideos to be compargahe query signal is
split into windowed segments of sizé= 1500 video frames, sliding along the signal evefy= 300 video frames.
Each segment is compared to the entire queried video usttiyaailable feature stream independently by means
of the GCC-PHAT measure. The GCC-PHAT implements a frequelmenain weighting of the cross-correlation
between two signals, given by:

RG G (m) = FH (X1 (w) - X5 (w) - ¥prar(w)) 4)

Z1,T2

where X (w) and X, (w) are the signals being compared in frequency domain (usoatlyerted from time domain
using Fast Fourier Transform, FFTF ! is the inverse of the FFT angd(w) is a weighting function:

1
= Xi(w) - X3 ()] ©)

where||- || indicates the modulus. The GCC-PHAT returns a normalizedsscorrelation plot (with values between
0 and 1) with a maximum atnmax, i.€., the delay for which both signals are most similar.

The GCC-PHAT metric is computed for each of the audio and widignature pairs from the two videos,
obtaining a cross-correlation plot for each of them. Thessroorrelation measures are then fused together into one
cross-correlation plot. Then, thebest ¢ = 3 in the system presented) maxima of the fused cross-cdaelptot
are found and the associateebest delays are saved into a delays histogram. Such héstogounts how many
times the same delay has been found across all windowed s¢gnidne use of a delays histogram follows the

Yprar(w)

2http://www.vlfeat.org
3Note that this is typically done offline for all videos in thgsgem.



rationale that the delays defining segment matches shomidineconstant throughout the entire segment, ending

with a peak in the histogram, whereas non-matching segnséotgd return random delays. Note that these delays

are stored in the histogram absoluteterms — in video frames, with respect to the beginning of thery signal.
Next, the best alignment delays are determined from theydesogram by finding the peak count (maount)

and selecting all delays with counts within [ma&ount-1, maxcount] range. For each one of these delays, the

query and queried video windowed segments —in each of thiableamodalities— are retrieved and the weighted

dot-product is computed as follows:

5’31 952 max|

Doy, vy (Mimax) ZW (6)

|z 1”952 aXH

whereW;indicates ara priory weight assigned to each available signatute= 1..N); z}[mmay is the signature
in the query video, delayed to the optimum match delay; jands the L2-norm of each signature vectdr:| =
>, 22l
In order to automatically define the appropriate weight facte modality we introduce the use of the entropy.
The definition of the entropy is

Entropy(X) = — Z(w[z] -In(z[i]) (7)

Where X = z[1]...z[N] is an unidimensional sequence of probabilities (with valfrem 0 to 1). The entropy
indicates the amount of information present in the signal,how uncertain is the random variable that generates
the signal. High values of entropy indicate low uncertairatgd vice versa. In our particular application we are
interested in measuring how well a modality can determira ¢hsegment? is similar toz%, and discriminate it
from any other segment. For this purpose we consider thatdalitp that has an overall low entropy will contain
much more discriminatory information that will lead to a mdrustful score than higher entropy modalities. We
then formulate the weights as

1

w; = ~ ~ 8
" max(entropy(z? ), entropy(z})) ®)

we take for each pair of compared segments the inverse ofetpment with maximum entropy as the lower
bound discriminability capability of that modality in th®@segments. Note that before computing the entropy of
the features we need to normalize them betweeand 1 and use these values as probabilities. We do this by
subtracting the minimum value of the segment to each poidtdividing by the dynamic range of the signal.

Finally, among all obtained scores we select the higheses@nd associated matching segments) as the output
for that query-video pair.

B. SIFT-based Matching Algorithm

The video copy detection algorithm relying on local feasuoperates in two stages. In the first stage all query
keyframes are compared to all reference keyframes reguliirone ranked list of relevant reference keyframes
for each query keyframe. In the second stage all ranked gisiduced for keyframes from one query video are
combined using a very simple voting mechanism as describémib

The first stage relies on a scalable search engine heavipyréusby the state of the art approaches to object
matching based on Vocabulary Tre&g, [?]. These approaches mimic text-retrieval systems by griagtikey-
point descriptors by k-means clustering creating the stleda/ocabularies of Visual Words. In other words, in
an off-line process a large number of descriptor exampleschustered into the Vocabulary of Visual Words, that
defines a quantization of the descriptor space. From thisenbewvery key-point can be represented by its mapping
to the closest Visual Word. Once the dictionary is createceéérence images are represented using an inverted file
structure that stores all occurrences of every visual wordllireference images. Typically the scoring is based on
the vector-space model (TF-IDF scoring) followed by a \aiiioin of spatial consistency between matched visual
words. It should be noted that in our case, the TF-IDF scasmgplaced by our own solution. In all experiments
we used a relatively small hierarchical vocabulary of 10Kual words 4 levels and branching) created by
clustering SIFT features froK randomly selected reference keyframes.



In the second stage, for each keyframe of a particular quenaecumulate the top keyframes in the ranked list
and classify them in their videos of origin. The video thabtains more matches keyframes at the end is the one
chosen as possible copy. We obtain a score by normalizingndih@ber of matches by the number of keyframes
in the query. In order to return a start-end time for the matehfind the maximum and minimum times from
all matched keyframes in the selected video. As we were n@t gus method could give us accurate matching
segments (and tests with TRECVID 08 were ot conclusive) we alibmitted an alternate output where the whole
reference video is returned as a match.

V. TRECVID PARTICIPATION RESULTS

In the following we describe the particular configuratioristtee different systems submitted to the evaluation
and our analysis on their performances

For the video-only submission we submitted runs with the diffierent systems (local feature-based and global
feature-based) as described above. For the global febased system we ran the algorithm with all (three) available
image features described in this paper. In none of the sgstisnve use an exhaustive method to tune the optimum
submission threshold. Also, for this years’ evaluation vegehnot considered any modification from the NOFA to
the BALANCED conditions except for a slightly higher thredthin the NOFA condition.

We submittedt outputs to this condition? using global features arl using local features (each of them with
NOFA and BALANCED required submissions). Both in global aodal features’ submissions we submitted a
run where the reference matching segment correspondedc tactial segment returned by the system and a run
where the reference matching segment covered all the refenddeo’s time. By far, our best results were obtained
with the cross-correlation system using the exact referanatching time as obtained by the algorithm. Results
are aligned or slightly better than the median for this tastept for query 2 and 10 (where we performed much
better than the average) and query 6 where our system umtterped.

Results for the local features-based algorithm are not asl @s expected. After a first analysis of the possible
reasons we tend to think that most matches for any keyfrantle t@kt (or not) in it were returning random
keyframes with text, jeopardizing the results.

For the audio-only submission we submitted only runs usigdross-correlation based system with the same
exact configuration as with the video-only submission, pktiat in this case we used tBaudio features explained
above. Results of this run are not good at all as we made thakei®f not including the009 reference set in
the test.

Finally, for the audio-video submission we were planningsoibmitting an algorithm that combined both local
and global features but did not have time to come up with thletrolution. In fact, in order to turn the results in
reasonably on time (we were finally late just a few hours) we toatrim the cross-correlation based algorithm to
only use one video feature (highlights centroid) and ondcafehture (XBIC metric). We also implemented a few
more speedups in the code that must have caused a bug in teensys results have not been as expected.

In overall, we believe strongly that change-based feataresa very interesting addition to local features as
they are very robust to transformations in the media. On therchand, our current implementation of the cross-
correlation based system is very slow computationally,ciwtjeopardizes its scalability (which we felt strongly
when having to process almost 10K videos in the a+v condition

We are working on speeding up the cross-correlation baggatitdm and on combining the local and global
features for a more effective video copy detection.
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