Learning From Video Browse Behavior

- 0 ×

Š

Problem Statement

- Starting results relatively weak
 Combination of query methods troublesome
- Possible solutions:
 Optimize result selection
 - Visualize multiple query methods simultaneously
 - Analyze user browse behavior

Optimize Result selection? Focus + Context browsing

Focus + Context browsing

Focus:

defined by the current focal shot

Context:

- defined by the rest of the interface
- We use: multi thread browsing

 A thread is a linked sequence of shots in a specified order, based upon an aspect of their content

Threads used

query threads

 merged result of query-by-text and/or query-byconcept and/or query-by-example

time threads

 based on the shots in the video containing the focal shot

visual threads

- based on visual similarity of focal shot
- history thread
 - based on the previous user browse behavior

Multi Thread Browsing: ForkBrowser

Multi Thread Browsing: ForkBrowser

Problem Statement

Starting results relatively weak

Combination of query methods troublesome

Possible solutions:

Optimize result selection

We propose: Focus + Context

Visualize multiple query methods simultaneously

We propose: Multi Thread Browsing

Analyze user browse behavior

We propose: Relevance Feedback based on context

Relevance Feedback based on Context

Based on online SVM learning

- User provides positive annotations
- System gathers negative annotations based on user browse behavior
 - using displayed context

User switches query thread when current results seem exhausted

Relevance Feedback based on Context

All displayed shots accumulate a score to have been seen by the user When a shot reaches a threshold that shot is used as a negative example

How to evaluate performance?

Problem with measuring real world users

Component level evaluation requires user simulation

User Simulation with a State Machine

Experimental Setup

TRECVID 2008 dataset

- 200 hours of video
- 48 topics, with (incomplete) annotations
- 57 semantic concepts (21 of '08, 37 of '07)
- best concepts taken as optimal starting query

Experiment A: What is the benefit of having multiple threads?

Experiment B: When should a user switch to relevance feedback results?

Experiment A

- What is the benefit of having multiple threads?
 Measure
 - retrieval performance vs number of shown threads
 - number of positives after 500 actions, repeat for:

Experiment A

15 - 🗆 ×

Experiment B

When should a user switch to relevance feedback results?

Measured

 optimal # of actions without results before using relevance feedback

Experiment B

Conclusions

Results indicate:

- showing multiple threads yield better performance
 also increases the time to perceive results for real world humans
- We found a inverse correlation between # of threads shown and importance of initial query
- Relevance Feedback yields greatest benefit for topics which would otherwise have limited results.

ForkBrowser Focus + Context browsing paradigm, together with good initial concepts, consistently performs well

Any questions?

