Indexing Local Configurations of Features for Scalable Content-Based Video Copy Detection

Sebastien Poullot, Xiaomeng Wu, and Shin’ichi Satoh
National Institute of Informatics (NII)
Michel Crucianu,
Conservatoire National des Arts et Metiers (CNAM)
Goals and choices

- Priority: speed → scalability
- Quality, MinDCR = 0.5

Choices

- Frame selection → keyframes (3000 per hour)
 - Depending on global activity changes
- Flipped keyframes in ref database
 - Descriptors not invariant
Goals and choices

- Priority: speed \rightarrow scalability
- Quality, $\text{MinDCR} = 0.5$

Choices

- Pol \rightarrow Harris corner
 - Fast computation, but noise and blur sensitive
- Local descriptors \rightarrow spatio-temporal local jets
 - Fast computation, but not scale invariant, and frame drop sensitive
- Global description \rightarrow scalability
 - Smaller database \rightarrow search faster
 - No vote process at frame level
- Indexing \rightarrow scalability
Goals

- A video description at frame level using local features: Glocal (alternative to BoF)
 - An interesting trade off scalability / accuracy
- An indexing scheme based on associations of local features
 - Reduce bad collisions
- A simple shape descriptor
 - Filter out remaining bad collisions

→ scalability and accuracy
Method
Processings

Videos (refs and queries) → Keyframe extraction → Pol detection and local descriptors extraction → Glocal descriptor

Local associations → Geometric bucket insertion → Intra bucket similarity search → Video sequence matching
Local features

- Points of Interest: Harris corner (could be DoG, Hessian, etc)
- Local Descriptors at these positions: SpatioTemporal Local Jets (could be dipoles, SIFT, GLOH, etc)

→ a set of descriptors associated to a set of positions (d1,p1), (d2,p2),..., (dn,pn)
Quantization of local features

- Quantization of the descriptors \((d_i, p_i, q_i)\)
- Use a parameterized Zgrid (based on distributions)

Keyframe Glocal description = sum of quantizations of features
Small descriptor and vocabulary (\(D=10\), 1024 bits / 1024 words)
No clustering needed
Combining local features

Construction of N-tuples using K-NN in image plane

\[P_1 - P_{1NN1} - P_{2NN1} \]
\[P_1 - P_{3NN1} - P_{4NN1} \]
\[P_1 - P_{5NN1} - P_{6NN1} \]
\[P_2 - P_{1NN2} - P_{2NN2} \]
\[P_2 - P_{3NN2} - P_{4NN2} \]
\[P_2 - P_{5NN2} - P_{6NN2} \]
Combining local features

- Pol: up to 150 / keyframe
- Up to 5 triplets / Pol (1NN&2NN,..., 9NN&10NN)
- Up to 750 associations per keyframe
- Some redundancy appears → average = 650 associations
 - Glocal descriptors inserted in 650 buckets
 - Bucket choice depends on Pol
 - Buckets defined by quantization of descriptors
 - Bucket definition depends on local descriptors
Bucket definition

Number of possible buckets $N_B = \frac{(2^d)^3}{L!}$ where $L = \text{sentence length}$

Trecvid: $d=10$, $L=3 \rightarrow N_B = 178.10e6$
Indexing method

Local descriptors quantified in description space

Pol associated in keyframe space

- Positions 1, 3 & 11
- Positions 5, 6 & 14
- Positions 5, 12 & 16

Glocal description: 1010110000110101
Weak shape code

- Ratio between longer and smaller side (≥ 1)

- Allow to distinguish different local configurations: more or less flat
Intra bucket similarity search

- Bucket = list of Glocal Descriptor Gi.(q, sc, tc)

- In each bucket, only between refs and queries, compute:
 - correspondence between shape codes (filtering)
 - similarity

For each couple of Glocal descriptor (Gx, Gy)
if (Gx.sc ~ Gy.sc)
then if (Sim(Gx.q, Gy.q) > Th)
 Keep (Gx.(id,tc), Gy.(id,tc))
Matching Video Sequence

Between two videos find temporal consistency of keyframes

- Number of couples of matching keyframe $\geq \tau_i$
- Blank between two successive pairs of matching keyframes $\leq \tau_g$
- Offset between two successive pairs of keyframes $\leq \tau_j$
Computation costs

- Extraction of keyframes: 1/25 of real time (rl)
- Computation of descriptors: 1/50 rl
- Construction of reference database: 1/200 rl (offline)
- Query: 1/150 rl

→ limits: keyframes extraction process and descriptor computation
Results
Results - Balanced
Results - Balanced

Computer: laptop - core2Duo@2.6Ghz - 4Gb RAM – HD 5400RPM
Results – No False Alarm
Results – No False Alarm

Computer: laptop - core2Duo@2.6Ghz - 4Gb RAM – HD 5400RPM
Conclusion

- Glocal description is relevant

- Local associations of features for indexing gives nice accuracy and good scalability to CDVCB

- Weak shape embedding dramatically scales up CDVCB with small loss of recall and high gain of precision (2/3 of similarities avoided, FA/10)

- Method has proven its possibility
 - TRECVID09 CBVCD task
 - 3000h database similarity self join (global 6 hours)
Future works

- Further association of Pol and Descriptors to test (Hessian, SURF, Dipoles, etc)
- Other weak geometric concept
- Try the method to other fields
 - Objects (BoF) – near duplicates
 - Pictures
- Extraction of knowledge on large databases
Thank you for attention