TRECVID Story Segmentation based on Content-Independent Audio-Video Features

Keiichiro Hoashi, Masaru Sugano, Masaki Naito, Kazunori Matsumoto, Fumiaki Sugaya, Yasuyuki Nakajima

KDDI R&D Laboratories, Inc.
Outline

- Introduction
- System description
 - Baseline story segmentation method
 - SVM-based segmentation w/ low-level features
 - System components:
 - Section-specific segmentation
 - Anchor shot segmentation
 - Post-filtering
- Experiment results
- Conclusion
Introduction

Motivation

- Development of a *generic* story segmentation algorithm applicable to non-news video contents

Requirements

- Utilize only low-level audio-video features which can be extracted from any video data
 - Restricted use of news-specific features (e.g., anchor shots)
 - Restricted use of text information (e.g., ASR results)

Main focus: Story segmentation based on “Audio+Video” experiment condition
However, content-specific features are necessary to achieve accurate segmentation.

Content-specific components developed to complement weak points of baseline method.

Highly accurate story segmentation achieved!
Overview: Experiment results

Figure 1. Recall, precision and F-measure of all “Audio+Video” TRECVID submissions

Outperformed all non-KDDI runs!
System Description
System outline

Baseline

Input video

- shot segmentation
- feature extraction
- SVM-based story segmentation

Section-specialized segmentation

- section extraction
- section-specialized SVM

Anchor shot segmentation

- anchor shot extraction
- anchor shot segmentation based on “silence”
- story boundary addition

Post-filter

Filter candidates w/o silent segments and anchor shots
“Baseline” component

Baseline

Input video

- shot segmentation
- feature extraction
- SVM-based story segmentation

Section-specialized segmentation

- section extraction
- section-specialized SVM

Anchor shot segmentation

- anchor shot extraction
- anchor shot segmentation based on "silence"
- story boundary addition

Post-filter

- Filter candidates w/o silent segments and anchor shots
Baseline story segmentation

- Procedures:
 - Shot segmentation
 - Merged TRECVID common shot boundaries with shot segmentation results of IBM VideoAnnEx tool
 - Applied “curtain-type” wipe detection method
 - Feature extraction
 - Extracts low-level audio-video features from each shot, and generates “shot vectors”
 - SVM-based story segmentation
 - Discriminates shots which contain story boundaries
Extracted audio-video features

- Audio
 - Average RMS
 - Avg RMS of first n frames
 - Frequency of audio class (silence, speech, music, noise)
 - Details in Reference [4]

- Motion
 - Horizontal motion
 - Vertical motion
 - Total motion
 - Motion intensity

- Color
 - Color layout of first, middle, and last frame (6*Y, 3*Cb, 3*Cr)
 - Color layout distance between first, middle and last frames

- Temporal
 - Shot duration
 - Shot density

Total number of elements: 51

51-dimensional “shot vector”
SVM-based story segmentation

- **Apply SVM to discriminate shots w/ story boundary**
- **Training phase**
 - Shots which contain story boundary — *Positive*
 - All other shots — *Negative*
- **Evaluation phase**
 - Extract N shots based on distance from SVM hyperplane
 - $N = \text{Average number of stories in ABC, CNN (Baseline)}$
 - $N = \text{Average number of stories} \times 1.5 \text{ (Extended baseline)}$
 - Set story boundary at beginning of each extracted shot
Problems of baseline method

- Although baseline results were satisfactory, several weak points were observed…
- Poor recall in various “sections”
 - e.g., Top Stories, Headline Sports of CNN
 - Cause: Different characteristics compared to general content
 - No anchor shots, background music, etc.
 - SVM unable to adapt to various features
- Impossible to detect multiple story boundaries that occur within a single shot
 - Baseline can only set one story boundary per shot
Additional system components

- **Section-specialized segmentation**
 - **Objective:**
 - Improvement of recall in specific sections which have different characteristics

- **Anchor shot segmentation**
 - **Objective:**
 - Detection of multiple story boundaries which occur within a single shot

- **Post-filter**
 - **Objective:**
 - Improvement of precision
Component 1: Section-specialized segmentation

Baseline

Input video

shot segmentation

feature extraction

SVM-based story segmentation

Section-specialized segmentation

section extraction

Section-specialized SVM

Anchor shot segmentation

anchor shot extraction

anchor shot segmentation based on “silence”

story boundary addition

Post-filter

Filter candidates w/o silent segments and anchor shots
Section-specialized segmentation

- General approach:
 - Construct SVM specialized for story segmentation within specified sections

- Procedures:
 - Section extraction
 - Extraction based on “jingles”, i.e., audio-video sequences which initiate sections
 - Section-specialized SVM
 - Construct SVM specialized to conduct story segmentation on extracted sections
Section extraction

- Automatic detection of “jingles” based on reference audio signals
 - Based on “Time-series active search” algorithm [Kashino]
- Extract sections based on position of extracted jingles

- Apply section-specialized SVM to set story boundaries within each extracted section
Component 2: Anchor shot segmentation

Baseline

Input video

shot segmentation

feature extraction

SVM-based story segmentation

Section-specialized segmentation

section extraction

section-specialized SVM

Anchor shot segmentation

anchor shot extraction

anchor shot segmentation based on “silence”

story boundary addition

Post-filter

Filter candidates w/o silent segments and anchor shots
Anchor shot segmentation

- General approach:
 - Extract shots which are expected to contain multiple stories (anchor shots), and insert additional boundaries

- Procedures:
 - Anchor shot extraction
 - Construct SVM to discriminate anchor shots based on audio-video features
 - Extraction of “silent sections”
 - Two methods:
 • Audio classification results
 • HMM-based non-speech detector
 - Story boundary addition
 - Insert story boundaries at detected silence sections
Component 3: Post-filter

Baseline

Input video

shot segmentation

feature extraction

SVM-based story segmentation

Section-specialized segmentation

section extraction

section-specialized SVM

Anchor shot segmentation

anchor shot extraction

anchor shot segmentation based on “silence”

story boundary addition

Post-filter

Filter candidates w/o silent segments and anchor shots
Post-filter

- **Objective:**
 - Improvement of story segmentation precision
 - *Objective of previous components is improvement of recall*

- **Procedure:**
 - Omission of questionable story boundary candidates based on:
 - Silence section extraction
 - Hypothesis: Story transitions are accompanied with significant pause = silence
 - Anchor shot detection
 - Hypothesis: Story boundaries accompanied with *non*-anchor shots are probably mistaken
 - Utilizes features used in in previous components

Filter candidates w/o silent segments and anchor shots
Experiment Results
Table 1. Summary of KDDI “Audio+Video” story segmentation runs

<table>
<thead>
<tr>
<th>Run ID</th>
<th>Baseline</th>
<th>SS-S</th>
<th>Anchor SS</th>
<th>Post-filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>kddi_ss_base1</td>
<td>Base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kddi_ss_c+k1</td>
<td>Base</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kddi_ss_all1</td>
<td>Base</td>
<td>✓</td>
<td>Audio Class</td>
<td></td>
</tr>
<tr>
<td>kddi_ss_all1_pfil</td>
<td>Base</td>
<td>✓</td>
<td>Audio Class</td>
<td>Audio Class</td>
</tr>
<tr>
<td>kddi_ss_all2_pfil</td>
<td>Ext</td>
<td>✓</td>
<td>Audio Class</td>
<td>Audio Class</td>
</tr>
<tr>
<td>kddi_ss_all1nsp07_pfil</td>
<td>Base</td>
<td>✓</td>
<td>HMM</td>
<td>HMM</td>
</tr>
<tr>
<td>kddi_ss_all2nsp07_pfil</td>
<td>Ext</td>
<td>✓</td>
<td>HMM</td>
<td>HMM</td>
</tr>
</tbody>
</table>
Evaluation results

Table 2. Results of KDDI “Audio+Video” story segmentation runs

<table>
<thead>
<tr>
<th>Run ID</th>
<th>Recall</th>
<th>Precision</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>kddi_ss_base1</td>
<td>0.640</td>
<td>0.622</td>
<td>0.631</td>
</tr>
<tr>
<td>kddi_ss_c+k1</td>
<td>0.707</td>
<td>0.637</td>
<td>0.670</td>
</tr>
<tr>
<td>kddi_ss_all1</td>
<td>0.741</td>
<td>0.630</td>
<td>0.681</td>
</tr>
<tr>
<td>kddi_ss_all1_pfil</td>
<td>0.710</td>
<td>0.675</td>
<td>0.692</td>
</tr>
<tr>
<td>kddi_ss_all2_pfil</td>
<td>0.756</td>
<td>0.567</td>
<td>0.648</td>
</tr>
<tr>
<td>kddi_ss_all1nsp07_pfil</td>
<td>0.738</td>
<td>0.642</td>
<td>0.687</td>
</tr>
<tr>
<td>kddi_ss_all2nsp07_pfil</td>
<td>0.786</td>
<td>0.531</td>
<td>0.634</td>
</tr>
</tbody>
</table>
Contribution of each system component

- **Section-specialized segmentation (SS-S)**
 - Baseline vs. Baseline + SS-S
 - Recall: +0.123 (0.605 - 0.728)
 - Precision: +0.026 (0.596 - 0.625)
 - *Comparison based only on CNN data*
 - Specific sections could not be defined for ABC...

- **Anchor shot segmentation (ASS)**
 - Baseline + SS-S vs. Baseline + SS-S + ASS:
 - Recall: +0.034 (0.707 - 0.741)
 - Precision: -0.007 (0.637 - 0.630)

- **Post-filter (PF)**
 - Baseline + SS-S + ASS vs. Base + SS-S + ASS + PF
 - Recall: -0.031 (0.741 - 0.710)
 - Precision: +0.045 (0.630 - 0.675)
Summary of system component contributions

- **Section-specialized segmentation**
 - Highly effective *(if sections are definable and extractable)*

- **Anchor shot segmentation**
 - Effective for recall improvement
 - Decrease of precision was not as significant as predicted

- **Post-filter**
 - Precision improved, recall decreased
 - Overall improvement (F-measure) was minimal
Conclusion

- Proposed SVM-based story segmentation method based on low-level audio-video features
 - Applicable to video of any domain
 - Significantly efficient compared to conventional methods which utilize sophisticated feature extraction
 - Achieves highly accurate story segmentation!
- Various content-specific components also effective
 - Generality of audio-video features enabled easy implementation of system components
Future work

- Segmentation on video w/ insufficient training
 - Recall was poor on video files recorded in environment that did not appear in development data

- Automatic extraction of reference signals for jingle detection
 - Enables application of section-specialized segmentation for various news programs

- Normal studio setting (Recall: approx. 80%)
- 19981216~18_ABCa.mpg (Recall: 13~36%)
Thanks 😊