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Abstract

This year the UvA-MediaMill team participated in the Feature Extraction and Search Task.
We developed a generic approach for semantic concept classification using the semantic value
chain. The semantic value chain extracts concepts from video documents based on three con-
secutive analysis links, named the content link, the style link, and the context link. Various
experiments within the analysis links were performed, showing amongst others the merit of pro-
cessing beyond key frames, the value of style elements, and the importance of learning semantic
context. For all experiments a lexicon of 32 concepts was exploited, 10 of which are part of the
Feature Extraction Task. Top three system-based ranking in 8 out of the 10 benchmark concepts
indicates that our approach is very promising. Apart from this, the lexicon of 32 concepts proved
very useful in an interactive search scenario with our semantic video search engine, where we
obtained the highest mean average precision of all participants.

1 Introduction

Technological developments in a wide range of disciplines are facilitating the access to large multimedia
repositories at a semantic level. Sophisticated detection methods for specific semantic concepts exist.
However, because the enormous amount of possible concepts in video documents, research should
concentrate on generic methods for concept detection, see for example [1, 5, 19].

Although substantial progress has been achieved, the semantic gap still hampers commercial ex-
ploitation of concept detection methods. In [16], similarity, learning, and interaction are identified
as key techniques that aid in bringing semantics to the user. Thus, given the semantic gap, an ideal
semantic video retrieval system should be able to learn a large set of concepts for initial search, and
use similarity and interaction to refine results to an acceptable level.

In this contribution we propose the semantic value chain, a novel method for generic semantic
concept detection. We developed detectors for a lexicon of 32 concepts that allow for query by
concept. Furthermore, we explored the combination of query by concept, query by similarity, and
interaction into an integrated semantic video search engine. To demonstrate the effectiveness of our
approach, both the semantic value chain and interactive search experiments are evaluated within the
2004 TRECVID video retrieval benchmark.

The organization of this paper is as follows. First, we discuss the semantic lexicon used in our
system. Then we proceed in Section 3 with the description of the semantic value chain. In Section 4
we elaborate on our semantic video search engine. Benchmark results are discussed in Section 5.

2 Semantic Lexicon

A priori we define a lexicon of 32 semantic concepts. Concepts are chosen based on the indices
described in [18], previous TRECVID feature extraction tasks, anticipated positive influence on the
result of the 10 benchmark concepts, as well as being relevant for general search. For all concepts
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Figure 1: The semantic value chain.

considered a ground truth is annotated. The ground truth is based on a cleaned version of the common
annotation effort of the TRECVID 2003 development set [9], the evaluation results of the 2003 test
set provided by NIST, and additional annotations of the TRECVID 2004 development set. All our
submitted runs can thus be considered to be of type B. The following concepts form the semantic
lexicon:

• {airplane take off, American football, animal, baseball, basket scored, beach, bicycle, Bill Clinton,
boat, building, car, cartoon, financial news anchor, golf, graphics, ice hockey, Madeleine Albright,
news anchor, news subject monologue, outdoor, overlayed text, people, people walking, physical
violence, road, soccer, sporting event, stock quotes, studio setting, train, vegetation, weather
news};

Together with the video data, the annotated lexicon forms the input for the semantic value chain.

3 Semantic Value Chain Analysis

For each semantic concept in the lexicon a tailored approach could be developed, however we strive
for a generic method. To arrive at such a generic approach for concept detection in video, we view
semantic video analysis as an inverted authoring process [18]. To express a semantic intention an
author uses style elements. In [19] we identified four style elements, namely: layout, content, capture,
and concept context, that aid in generic extraction of semantics from produced video. It was found
that additional analysis methods for content and concept context have the largest potential to improve
semantic index results. In this contribution we therefore propose the semantic value chain. The output
of each link in the chain forms the input for the next link, in the process enriching the semantics.
The semantic value chain extracts concepts from video based on three analysis links, i.e. the content
link, the style link, and the context link. In this Section we first discuss the general architecture used
in each link. Then we proceed with the individual analysis links for content, style, and context. A
complete overview of the semantic value chain is given in Fig. 1.

3.1 General Link Architecture

We view detection of concepts in video as a pattern recognition problem, where the aim is to detect
a semantic concept ω based on a pattern x. To obtain x a granularity needs to be chosen first, e.g. a
camera shot segmentation. Each link in the semantic value chain has a separate analysis method to
obtain x from a video, a shot segmentation, and an annotated lexicon. To learn the relation between
ω and x we exploit supervised learning by means of statistical pattern recognition.



Figure 2: General link architecture within the semantic value chain.

Among the large variety of supervised machine learning approaches available, the Support Vector
Machine (SVM) framework [20, 4] has proven to be a solid choice [17, 1]. The SVM is able to learn
from few examples, handle unbalanced data, and handle unknown or erroneous detected data. An
SVM tries to find an optimal separating hyperplane between two classes by maximizing the margin
between those two different classes. Finding this optimal hyperplane is viewed as the solution of a
quadratic programming problem. We convert the SVM margin to a posterior probability using Platt’s
method [11]. Hence, probabilistic models, obtained when an SVM is trained for a semantic concept
ω, result in a likelihood p(ω|x) when applied to unseen patterns from the test data.

The influence of SVM parameters on concept detection performance is significant [10]. To obtain
optimal parameter settings for a semantic classifier, grid search on a large number of classifier pa-
rameter combinations must be applied by using an independent validation set. A priori we therefore
split the TRECVID 2004 development data into a non-overlapping training and validation set. The
training set D contained 85% of the development data, the validation set V contained the remaining
15%. Based on the broadcast date a proportional number of videos are alternatingly assigned to each
set. Apart from the amount of data, this division assures maximum comparability for both sets. The
predefined training and validation set are used in combination with 3-fold cross validation to optimize
concept detection performance.

Each analysis link in the semantic value chain exploits feature extraction to obtain pattern x from
the data. Then, it uses a supervised learning module to learn an optimal model for all concepts in
the lexicon. This is illustrated in the overview of our general link architecture in Fig. 2.

3.2 Content Link

In the content link we view of video from the data perspective. In general, three data streams exist
in video, i.e. the auditory, textual, and visual modality. For this years benchmark the content link
exploits text and visual features.

3.2.1 Visual Analysis

We analyze the visual modality at the image level. First, we remove the border of each frame,
including the space occupied by a possible ticker tape. Then, we analyze 1 out of every 15 frames
to limit the dependency of chosen key frames. In those frames, we aim for weak segmentation, i.e.
a segmentation of an image into internally homogenous regions based on some set of visual feature
detectors [16]. Invariance was identified in [16] as a crucial aspect of a visual feature detector, e.g.



Figure 3: Examples of regional visual concept segmentation.

to design features which limit the influence of accidental recording circumstances. As the conditions
under which semantic concepts appear in large video repositories may vary greatly, we use invariant
visual features to arrive at weak segmentation. More specifically, visual features extracted by using
Gaussian color invariant measurements [7].

To obtain the visual features, we decorrelate RGB color values by linear transformation to the
opponent color system [7]. Smoothing the values with a Gaussian filter suppresses acquisition and
compression noise. The size of the Gaussian filters is varied to obtain a color representation that
is compatible with variations in the target object size. Normalizing each opponent color value by
its intensity suppresses global and local intensity variations. This results in two chromaticity values
per color pixel. Furthermore, we obtain rotationally invariant features by taking Gaussian derivative
filters, and combining the responses into two chromatic gradients. The seven measurements in total,
and each calculated over three scales, yield a 21 dimensional feature vector per pixel. This vector
serves as the input for a multi-class SVM [4] that associates each pixel to one of the following regional
visual concepts:

• {colored clothing, concrete, fire, graphic blue, graphic purple, graphic yellow, grassland, greenery,
indoor sport court, red carpet, sand, skin, sky, smoke, snow/ice, tuxedo, water body, wood};

As our visual feature analysis method is based on invariance we only need a few examples, in practice
less then 10 per class are sufficient. This pixel-wise classification results in a weak segmentation of an
image frame in terms of regional visual concepts, see Fig. 3 for an example.

Segmenting image frames into regional visual concepts at the granularity of a pixel is computa-
tionally intensive. Especially, if you aim to analyze as many frames as possible. Hence, we have to
solve a performance problem. For the processing of the visual modality in the content link we have
therefore applied the Parallel-Horus software architecture [15]. This architecture, consisting of a large
collection of low-level image processing primitives, allows the programmer to write fully sequential
applications for efficient parallel execution on homogeneous clusters of machines. While we estimate
that the processing of the entire TRECVID data set would have taken over 250 days on the fastest
sequential machine available to us, application of Parallel-Horus in combination with a distributed
Beowulf cluster consisting of 200 dual 1-Ghz Pentium-III CPUs [3] reduced the processing time to less
than 48 hours [15].

After segmentation of every 15th frame, the percentage of pixels associated to each of the 18
regional visual concepts is used as an image feature vector ~i. This vector forms the input for an SVM
that associates a probability p(ω|~i) to each frame for all 32 classes in the general lexicon of concepts.
We use a combination of classification results for individual frames over time to generate a probability
at shot level. For this purpose we evaluated four combination functions, namely: minimum, maximum,
average, and product. To optimize parameter settings, we use 3-fold cross validation on D. We then
test the obtained optimal model for each combination function on V. We found that averaging the
results of single images within a shot results in much better performance in terms of average precision
than an approach that relies on one key frame only.



Table 1: Semantic concept ordering based on content link analysis performance.

1. Weather news 9. People walking 17. Golf 25. Road

2. Stock quotes 10. Financial anchor 18. People 26. Beach

3. Anchor 11. Ice hockey 19. American football 27. Train

4. Overlayed text 12. Cartoon 20. Outdoor 28. Madeleine Albright

5. Basket scored 13. Studio setting 21. Car 29. Building

6. Graphics 14. Physical violence 22. Bill Clinton 30. Airplane take off

7. Baseball 15. Vegetation 23. News subject monologue 31. Bicycle

8. Sporting event 16. Boat 24. Animal 32. Soccer

3.2.2 Speech-based Textual Analysis

Transcribed speech obtained by the LIMSI speech detection system [6] serves as the textual input.
After stopword removal using SMART’s English stoplist [12], text that falls within the boundaries of
a camera shot is associated to that shot1. Since a semantic concept is also associated with a shot, we
learn a lexicon of words that have an association to a concept.

We compare the text associated with each shot with the learned lexicon to construct a text vector
~t. This vector contains the frequency histogram of words that have an association to a concept.
Because we treat all words in the lexicon equally, ~t contains responses to words that are likely to be
related to a semantic concept, but also words that have no obvious relation to a concept. For the
concept train for example the lexicon contains logically related words like passenger, tracks, train,
locomotive, overpass, and freight, but also less likely related words, e.g. cars, world, today, and twelve.
To prevent the influence of domain knowledge we apply an SVM on ~t to learn which combination of
words is important for a certain semantic concept. The SVM assigns a probability p(ω|~t) to each shot,
for all concepts in the lexicon. We use 3-fold cross validation on D to optimize parameter settings for
the learned models.

3.2.3 Submitted Runs from the Content Link

Based on the sketched analysis methods we submitted two runs from the content link. Results are
submitted for a subset of 10 semantic concepts from the lexicon, that is evaluated within the bench-
mark.

The first run is based on the best unimodal performance of a semantic concept on V (BU). Except
for basket scored, all semantic concepts had better performance for speech based text analysis than
for visual analysis. The second run uses vector fusion (VF) to integrate visual and speech based text
analysis. Both vectors ~i and ~t serve as input for this integrated analysis method. We concatenate
the text vector ~t with one image vector from each camera shot that has maximum probability for a
semantic concept, ~imax, into an integrated multimodal vector ~m. This vector serves as the input for
an SVM that associates probability p(ω|~m) to each shot, for all 32 concepts in the lexicon. Again we
use 3-fold cross validation on D for parameter optimization.

The VF run forms the input for the next link in the semantic value chain. For all concepts we
compute the average precision performance on V. An overview of all concepts ranked according to
average precision validation performance in the content link is given in Table 1.

1For Person X related concepts we stretch the camera shot boundaries with five seconds on each side, as in broadcast
news names or other indicative words are often mentioned just before or after a person is visible.



3.3 Style Link

In the style link we view a video from the production perspective. Based on the methodology presented
in [19], this link analyzes a produced video based on a set of four style detectors related to layout,
content, capture, and concept context. We combine style detector results into an iterative classifier
combination scheme to extract the semantics.

3.3.1 Style Detectors

We develop detectors for all four style roles as feature extraction in the style link, see [19] for specific
implementation details. We have chosen to categorize the output of all style detectors, as this allows
for easy fusion.

For the layout L the length of a camera shot is used as a feature, as this is known to be an
informative descriptor for genre [18]. Overlayed text is another informative descriptor. Its presence
is detected by a text localization algorithm [13]. To segment the auditory layout, periods of speech
and silence are detected based on an automatic speech recognition system [6]. We obtain a voice over
detector by combining the speech segmentation with the camera shot segmentation [19]. The set of
layout features is thus given by: L = {shot length, overlayed text, silence, voice over}.

As concerns the content C, a frontal face detector [14] is applied to detect people. We count the
number of faces, and for each face its location is derived [19]. Apart from faces, we also apply a car
detector [14] to check for presence of cars. In addition, we measure the average amount of object
motion in a camera shot [17]. Based on speaker identification [6] we have been able to identify each of
the three most frequent speakers. The camera shot is checked for the presence on the basis of speech
from one of the three [19]. Text strings recognized by Video Optical Character Recognition [13]
are checked on length [19]. They are used as input for a named entity recognizer [21]. On the
transcribed text obtained by the LIMSI automatic speech recognition system, we also apply named
entity recognition. The set of content features is thus given by: C ={faces, face location, cars,
object motion, frequent speaker, overlayed text length, video text named entity, voice named entity}.

For capture T , we compute the camera distance from the size of detected faces [14, 19]. In addition
to camera distance, several types of camera work are detected [2]. Finally, for capture we also estimate
the amount of camera motion [2]. The set of capture features is thus given by: T = {camera distance,
camera work, camera motion}.

Concept context allows to enhance or reduce correlation between semantic concepts. For the initial
concept context S we developed a reporter detector. Reporters were recognized by fuzzy matching
of strings obtained from the transcript and VOCR with a database of names of CNN and ABC
affiliates [19]. The semantic results of the content link serve as the most important detector for the
concept context. Based on the order defined in Table 1 a concept detection result is iteratively added
to the concept context. Results for all concepts are ranked according to the maximum obtained
probability in the content link, i.e. p(ω|~m) or p(ω|~t). We use this rank to assign a semantic concept
detector result into one of five categories. The basic set of concept context detectors is given by: Ŝ =
{reporter, content link rank}.

The concatenation of
{

L̂, Ĉ, T̂ , Ŝ
}

yields a style vector ~s. This vector forms the input for an

iterative classifier that trains a style model for each concept in the lexicon.

3.3.2 Iterative Enrichment

In the concept context, we have defined order and started with weather news. This yields our first style
vector ~s1. Order is then exploited as follows. We train a style model for the concept weather news,
ω1, using ~s1. Based on p(ω1|~s1), the concept weather news is then again added to the concept context
or not. The decision to add a concept to the concept context depends on the general threshold τ on
p(ω|~s). In this iterative process the content link rank feature is replaced for the detected concept.
Together with the content link rank of semantic concept 2, i.e. stock quotes, this yields ~s2. This



iterative process is then repeated for all semantic concepts in the lexicon. To optimize parameter
settings for all individual style models, we used 3-fold cross validation on D.

3.3.3 Submitted Runs from the Style Link

We perform different experiments to verify the influence of the order. Furthermore we experiment
with different values for τ , and check the influence of separate style models for ABC and CNN. The
rationale here is that different authors have different style, and this should have an impact on semantic
concept performance [19].

In the AC1 run we use the order of Table 1 as a basis. Separate style models for ABC and CNN
were created, both using a threshold value of 0.5 for τ In the AC2 run we first train style models for
the 22 concepts that were not part of the TRECVID 2004 evaluation. The 10 concepts defined in
the feature extraction task are performed at the end. The relative order is again based on the order
of Table 1. Like AC1, separate style models for ABC and CNN are created, both using a threshold
value of 0.5 for τ The AC3 run is similar to the AC1 run, but τ was now set to 0.1. The COM run
combines ABC and CNN and uses the same settings as the AC1 run.

3.4 Context Link

In the context link we view a video from the context perspective. In the context link we rely on
concept detectors only. To combine concept detection results, different context configurations can be
exploited. We explore two configurations, one based on context vectors, and one based on an ontology.

3.4.1 Context Vectors

Both the content link and style link yield for each concept in the lexicon a probability that the concept
is present in a shot. We fuse those probabilities into a context vector ~c for each shot. This vector then
serves as the input for a stacked classifier that learns new concepts not present in ~c, or tries to improve
performance of existing semantic concepts, already present in ~c, see also [1, 8]. For TRECVID we
only experiment with 32 dimensional context vectors, that aim to improve performance of concepts
already in the lexicon. To optimize parameter settings, we use 3-fold cross validation on V.

3.4.2 Ontology

We also experiment with an ontology as an instance of the context configuration. In [23] an ontology
based learning algorithm was proposed to improve concept detection results. We use the proposed
confusion factor to improve results. In short, the method updates probability scores by taking into
account that certain concept combinations are very unlikely to co-occur, e.g. studio setting and
outdoor. We define the concept combinations on a set of common sense rules.

3.4.3 Submitted Runs from the Context Link

Based on the above configurations we perform different experiments in the context link. In the CC
run we combine the results of the content link into one context vector. In the R4 run we combined
the results of the AC1 run into a context vector. In the R5 run we combine the results of the AC2
run into a context vector. Finally, in the OR5 run we experiment with the ontology.

4 Semantic Video Search Engine

For the interactive Search Task we developed a semantic video search engine, which elaborates on last
years system [22]. The set of 32 semantic concepts forms the main input for our semantic video search
engine and allows for query by concept. Concepts can be queried based on likely presence or absence
and by combining results from the two different runs. Apart from query by concept, we also provide



Figure 4: The MediaMill semantic video search engine. The system allows for interactive query by
concept, query by keyword, and query by example. The top op the right panel shows the selected results,
the bottom shows results for the semantic concept car.

users with the possibility for query by keyword. To that end we first derive words from the speech
recognition result [6]. Latent Semantic Indexing is then used to reduce the search space, this space
is then also used for querying [22]. An exact match of keywords on the transcribed speech is also
possible. Finally, our system allows for query by example. For all key frames in the video repository,
we compute the global Lab color histograms using 32 bins for each channel. The Euclidean distance
is used for histogram comparison.

Combining query interfaces allows for interactive retrieval. For search topics that have a close
relation to one or more concepts from the lexicon, query by concept can be used. Examples include
finding shots of ice hockey rinks, bicycles rolling along, and Bill Clinton in front of an American
flag. Query by concept can be combined with query by keyword to find specific instances of semantic
concepts, e.g. shots containing flooded buildings, horses in motion, or people walking together with
dogs. Of course it can also be used in isolation to find very specific topics, like shots containing
Benjamin Netanyahu or Boris Yeltsin. Based on query by example the retrieved results can be
augmented with visually similar camera shots. To give an example, we performed an interactive
query on the semantic concepts airplane take off, bicycle, boat, car, and train to detect a set of
vehicles in Fig. 4.

5 Results

To evaluate both the semantic value chain and our semantic video search engine we participated in
the Feature Extraction Task and the Search Task of TRECVID 2004. We will first discuss our results
on the Feature Extraction Task.



Table 2: UvA-MM TRECVID 2004 run comparison for all 10 benchmark concepts. In parentheses
the total number of correctly judged semantic concepts.

Content Link Style Link Context Link

BU VF AC1 AC2 AC3 COM CC R4 R5 OR5

Boat (441) 0.108 0.117 0.096 0.094 0.098 0.101 0.084 0.070 0.096 0.042

Madeleine Albright (19) 0.238 0.136 0.023 0.027 0.021 0.035 0.000 0.015 0.018 0.021

Bill Clinton (409) 0.123 0.130 0.150 0.156 0.154 0.160 0.135 0.149 0.155 0.105

Train (43) 0.083 0.054 0.062 0.050 0.074 0.072 0.041 0.005 0.004 0.023

Beach (374) 0.008 0.020 0.017 0.011 0.010 0.021 0.010 0.012 0.010 0.006

Basket scored (103) 0.017 0.118 0.180 0.214 0.200 0.141 0.174 0.209 0.193 0.194

Airplane take off (62) 0.051 0.065 0.037 0.042 0.073 0.043 0.052 0.040 0.050 0.037

People walking (1695) 0.134 0.150 0.159 0.151 0.138 0.166 0.139 0.170 0.168 0.106

Physical violence (292) 0.062 0.064 0.071 0.052 0.076 0.067 0.080 0.086 0.069 0.064

Road (938) 0.073 0.089 0.129 0.135 0.135 0.118 0.080 0.138 0.141 0.120

MAP 0.090 0.094 0.093 0.095 0.096 0.093 0.078 0.089 0.090 0.072

5.1 Semantic Concept Detection

In total ten runs were submitted for the Feature Extraction task, mean average precision (MAP)
results are visualized in Table 2, an overview of the precision at 100 is given in Table 3.

From the submitted runs several conclusions can be drawn. First, the combination of modalities
(VF) in the content link almost always outperforms unimodal approaches (BU), except for sparse
concepts like Madeleine Albright and train. Second, a simple combination of textual and visual
content (VF) yields comparative MAP to more advanced methods, e.g. AC2 and R5. However, for
non-sparse concepts, the style link and context link in general improve concept detection performance.
Moreover, the average number of hits in the first 100 results increases in each link. This suggests that
our method requires a minimal number of examples to be effective. Third, the influence of concept
order in the style link seems to be important for the first added concepts only. Basket scored for
example, benefits a lot from added concept context in the AC2 run, when compared to the AC1 run.
However, in terms of MAP the AC2 run is only a little bit better then AC1. Fourth, lowering the value
of threshold τ has a positive influence on performance, and results in our best run when measured
in terms of MAP. Fifth, although the COM and AC1 run obtain similar MAP, it can be concluded
that the SVM classifier architecture is smart enough to make the distinction between ABC and CNN
styles. It seems that the SVM profits more from the number of examples than a strict separation in
style models. However, for concepts that are only common in one style, e.g. basket scored in CNN,
results do profit from a distinction between broadcast stations. Sixth, the influence of style is evident.
When comparing the CC run with the R4 run, the increase in MAP resulting from the style link is
14%. Finally, the difference in performance between the ontology run and the R5 run is significant
(R5 performs 25% better). This shows that making a priori assumptions about semantics in video
repositories is not a good idea, its better to learn semantic context from the data. For the concept
boat for example, we defined a priori that vegetation was not very likely to co-occur. This had a
very negative influence on performance, because it turned out that one of the boats we found very
frequently in the other runs was a kayak in a forest. Ontologies do seem to help for sparse concepts,
but this can also be explained as a failure of the learning approach because of a lack of examples.

If we compare our results with all other submitted systems, it is clear that we have presented a
powerful generic approach for semantic video indexing. The semantic value chain performs the best
for two concepts, second for five concepts, and third for one concept, see Fig. 5.



Table 3: UvA-MM TRECVID 2004 precision at 100 comparison for all 10 benchmark concepts. In
parentheses the total number of correctly judged semantic concepts.

Content Link Style Link Context Link

BU VF AC1 AC2 AC3 COM CC R4 R5 OR5 Average

Boat (441) 44 42 38 36 40 39 34 37 39 37 38.6

Madeleine Albright (19) 10 12 5 6 5 5 0 4 4 5 5.6

Bill Clinton (409) 25 26 35 32 34 36 26 37 41 33 32.5

Train (43) 9 7 7 6 8 8 7 3 2 5 6.2

Beach (374) 10 13 12 11 9 14 9 12 11 9 11.0

Basket scored (103) 8 24 21 35 30 21 26 30 33 33 26.1

Airplane take off (62) 9 10 8 11 9 9 10 8 10 10 9.4

People walking (1695) 65 65 72 57 65 71 68 83 77 54 67.7

Physical violence (292) 17 17 25 18 13 24 17 31 23 19 20.4

Road (938) 47 43 53 51 53 41 41 51 55 52 48.7

Average 24.4 25.9 27.6 26.3 26.6 26.8 23.8 29.6 29.5 25.7 26.6

5.2 Interactive Search

For the interactive search we submitted four runs in total. All runs were performed by expert users.
One user had knowledge about the semantic concepts and their validation set performance. The others
were confronted with the semantic concepts the first time they were introduced to the system.

For all topics the best UvA-MM result of each run is visualized, together with the median and the
best overall result, in Fig. 6. We scored above the median for all search topics, had best performance
for seven topics, and obtained best overall MAP with run UvA-MM1 (0.352). This run was completed
by the user with knowledge about the semantic concepts. The other three users obtained an MAP of
0.227 on average. A score that is 25% higher than the median of all interactive search runs submitted.

We explain the success of our approach, in part, by the lexicon we used for our semantic video

Figure 5: Comparison of UvA-MM semantic concept detection results with other systems. In terms of
system performance, UvA-MM ranks first in two concepts, second in five concepts, and third in one
concept.



Figure 6: Comparison of UvA-MM interactive search results with other systems. The UvA-MM runs
rank first in seven topics. Furthermore the UvA-MM1 run has the best MAP (not visualized).

search engine. For some topics there was a clear (accidental) overlap with the concepts in our lexicon,
i.e. ice hockey in search topic 130, bicycle in search topic 140, and Bill Clinton in search topic 144.
Not surprisingly we did very well on those topics. For others, general concept classes were available
that allow to make a first selection, e.g. sporting event for tennis player in search topic 142 and animal
for horses in search topic 145. Based on query by example and query by keyword, results can then
be refined. Query by example is particularly useful when an answer to a search topic is found in a
commercial. For search topics that did not have a clear overlap with the concepts in the lexicon, users
had to rely on a combination of query by keyword and query by example. Here we performed less
well, although still above the median. For example, wheelchairs in search topic 143 and Person X

related topics that were not in the lexicon (128, 133, 134, 135, 137).

6 Conclusion

To bridge the semantic gap an ideal video retrieval system should combine query by concept and query
by similarity in an interactive fashion. To that end we have developed a semantic video search engine.
Main innovation is the possibility to query on a lexicon of 32 semantic concepts. The concepts are
detected using the semantic value chain. The semantic value chain combines the content link, style
link, and context link into a consecutive analysis chain, that allows for generic video indexing. Both
the semantic value chain and the semantic video search engine are successfully evaluated within the
2004 TRECVID benchmark as top performers for their task.

The semantic value chain is as strong as its weakest link. For future research we plan to extend the
semantic value chain with more advanced image and text analysis methods in the content link. Apart
from improved content analysis we also plan to introduce feature selection in each link to optimize
results. However, the greatest challenge ahead is to extend the lexicon of semantic concepts to a set
that is compatible with human knowledge. This will have a dazzling impact on multimedia repository
usage scenarios.
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