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ABSTRACT

This paper presents some automatic shot detection techniques based on color histograms and also on mul-
tiresolution histograms. The approaches tested in the submitted runs are mainly focused on cut detection. The
main goal of the runs is to study the behaviour of color histogram differences as a first step in the use of multires-
olution color histograms into the adaptive threshold algorithm. Some previous experience on multiresolution
histograms has been taken into account to do that.

The techniques herein described improve the behaviour of multiresolution histograms, showing a path to
follow to turn them into a powerful tool to work on shot segmentation.
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1 Introduction

One of the main objectives of Content-based Multimedia Retrieval systems is the automatization of the
information extraction process from the raw data. When dealing with video data, the first step is to perform
a temporal video segmentation in order to make a shot decomposition of the video content. Del Bimbo [1],
Brunelli et al. [2] and Hanjalic [3] collect extensive reviews of this set of techniques. Depending on the domain
of work, these techniques can be classified in non-compressed [4, 5, 6, 7] and compressed video shot segmentation
[8, 9, 10].

This work focuses on the exploitation of multiresolution histograms [11] for cut detection using adaptive
thresholds. Starting from the Zhang et al. description of the technique [12], and taking into account that it does
not provide the expected results in all cases, a new implementation has been made, introducing improvements
oriented to work with multiresolution histograms. The main feature of the technique herein described is its high
adaptability to a wide range of videos due to the variable threshold managed.

The content of this paper may be broken down into a description of the proposed shot extraction technique
(Section 2), then the implementation analysis (Section 3), followed by the results achieved during the tests
(Section 4) and the conclusions obtained (Section 5).



2 Shot extraction description

2.1 Multiresolution histograms

The objective is to define a primitive that represents the colour information of an image at different
resolution levels. The histogram of the analysis coefficients of the wavelet transform for each colour plane of the
multiresolution representation has been chosen. In order to fuse the information proceeding from each resolution
level, the values computed at the lower levels are weighted by a factor of 4j−i , being j the resolution level of
the original image and i the considered resolution level (see equation 1):

h(k){R,G,B} =
∑

x,y

I
(i)
{R,G,B}(x, y) · 4j−i (1)

∀ (x, y) | I
(i)
{R,G,B}(x, y) = k, k = 0, . . . , 255,

being I
(i)
{R,G,B} the analysis coefficients of the transformed image at resolution level i and (x, y) the coordinates

of each coefficient, the expression of the computed histograms is

ĥ(k) =
h(k)

n
(2)

where n =
∑

k

h(k). It has been considered that information proceeding from lower resolution levels increases

the robustness of the discriminant process. This way, we store one histogram per colour plane of the original
image, as in the classical approach, but fusing information proceeding from different resolutions of the original
image. A deeper study about multirresolution histograms can be found at [11].

2.2 Global strategy

Video cut detection has two main purposes: to delimit the start and the end of the video shots and to
process the video content in a more efficient way. The basic idea of video cut detection algorithms is to compute
the differences between consecutive frames or groups of frames. Existing techniques differ in the way these
differences are computed.

Figure 1 depicts a scheme of the whole process. Di denotes the difference between the considered frame and
the previous one. In this case, the computed Di difference values are based on several color features in order to
make a more exhaustive analysis of the system response. The features implemented have been mean intensity,
histograms and multiresolution histograms [11]. A more detailed description of the implemented features can
be found further on. A candidate for cut is detected when the values are higher than a dynamically computed
threshold Th. The expression of Th is defined by Eq. 3

Th = weight

∑i+W

i=j−W D(i)

2W + 1
(3)

where W is the number of difference values taken into account of the left and right local neighbour windows,
i is the frame under consideration and weight is a gain factor. Therefore, the threshold is updated for each
processed frame.

One of the typical artifacts present in videos is the appearance of flashes that distort the normal analysis of
the video signal, because there is no change in the video content but abrupt changes appear in signal intensity.
In order to filter out the flashes, a second threshold Tflash has been implemented, following the model of Zhang
et al. [12]. Finally, once the comparisons are performed the threshold Th is recalculated, so that value can be
adapted to the new video signal content.

As Figure 1 shows, the cut detection algorithm starts extracting the frame i and computing the difference
Di which is compared against current threshold Th. If this difference is greater than Th a ratio for detecting
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Figure 1: Cut detection algorithm.

flash effects is calculated. When this ratio is greater than threshold Tflash a flash is detected. Otherwise, a cut
is found. Finally, the current window variance is calculated in order to test whether the data is suitable for
updating the value of threshold Th, and in that case a recalculation is needed. These ideas will be explained in
depth below.

3 Implementation analysis

Sometimes it happens that the processed difference values Di vary too much from frame i to next frame
i + 1, as it is the case when, for example, very fast camera movements occur. Therefore, those values that are
far away from the sequence recently processed must be discarded. The criteria used to filter these outliers is the
variance computed over the sliding window [12]. When the variance Vi is greater than an heuristic predefined
threshold Tv, the current threshold Th is not updated.

Flash elimination is done taking into consideration that the appearance of a flash produces an abrupt
change in intensity, but unlike real cut edges, the level of the signal comes back to the previous state after one
more frame or after a very few ones. The expression that filter flashes is

ratioflash =
Ds

Di

, (4)

where Ds is the difference between the W frames preceding the current frame and the W ones after it and Di

has been defined in Sec. 2.2.

Several color primitives have been tested: mean intensity [12], histograms [12] and multiresolution his-
tograms [11]. The value ratioflash has been normalized for each primitive in order to work in the interval [0, 1],



ideally meaning flash (ratioflash = 0) and cut (ratioflash = 1):
{

ratioflash < Tflash Flash detection
ratioflash ≥ Tflash Cut detection

(5)

Each primitive defines different expressions for Ds:

• Zhang’s implementation includes mean intensity (MI):

Ds =
1

255W

∣

∣

∣

∣

∣

i−1
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∣

∣

∣

∣

∣

(6)

• Histogram-based primitives:

Ds =
1

2

255
∑

c=0

|Hleft(c) − Hright(c)| (7)

where

Hleft(c) =
1

W

i−1
∑

k=i−W

Hk(c) (8)

Hright(c) =
1

W

i+W
∑

k=i+1

Hk(c) (9)

∀c = 0, . . . , 255

The interval [0, 1] has been equally subdivided to assign Ds < 0.5 to flashes.

Histograms usually present a problem when comparing distributions concentrated around near but not
exactly equal values. The result of the comparison produces high difference values although the appearance of
the images that generate the histograms is very similar. To reduce this effect a histogram quantification has
been performed, grouping color values to generate new classes:

Hq(i) =

iTc+Tc−1
∑

j=iTc

H(j), ∀i ∈ [0, Nc − 1] (10)

where Hq is the quantified histogram, H is the original histogram, Tc is the size of the new classes and Nc is
the number of classes (Nc · Tc = 256 for 8 bit cases).

While working with the quantification, the same problem can appear around the boundaries of the classes.
It can be solved equally redistributing edge levels between neighbour classes. It can be achieved computing the
value ci:

ci =

iTc+ε
∑

j=iTc−ε

H(j)

2ε
(11)

so the frequency of class i on the resultant quantified histogram with equal redistribution H e
q (i) will be:

He
q (i) = ci + ci+1 +

iTc+Tc−1−ε
∑

j=iTc+ε

H(j) (12)

where the summatory comes from equation 10. It must be noticed that the first and last classes of the histogram
are not considered on equation 12, since ci is not considered when i = 0 and ci+1 is not considered when
i = Nc − 1.

Figure 2 shows a comparison among the distributions of Di values computed over one of the videos used
in the experiments by the features previously described. Each graph presents the number of frames against Di
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Figure 2: Comparison of graphs showing number of frames against Di values.

values. It can be seen that around the frames 260 and 300, Figure 2(a) does not show some peaks that apperar
in Figure 2(b) and are expected to be cuts. Moreover, Figure 2(c) shows unreal differences, while Figure 2(d)
shows a smoother graph.

Once the cuts have been detected, the boundaries of the shots extracted are written to a file using an XML
formal description [14]. In order to summarize the content of a shot, we have chosen a key frame per shot,
specifying the beginning, the end, and the key frame for every detected shot.

4 Experimental Results

4.1 Experiments Setup

The main objectives of the tests are to measure and analyze the recall and precision values of the imple-
mented features with and without the dynamic threshold. We use the classical definition of recall and precision:

Recall: =
True positives

True positives + False negatives
(13)

Precision: =
True positives

True positives + False positives
(14)

The results shown in the following sections correspond to more than the 10 runs evaluated by the TRECVID



Método Recall Precision

H_Q4 0.883 0.748
H_Q8 0.875 0.811
H_Q16 0.868 0.855
H_Q32 0.845 0.884
H_Q64 0.792 0.895
H_QM8 0.869 0.759
H_QM16 0.864 0.815
H_QM32 0.860 0.839
H_QM64 0.851 0.849
HMR_QM64 0.759 0.858

Table 1: Precision and recall evaluated by TRECVID 2004.

2004 team. This evaluation considers short gradual transitions as cuts, whereas our evaluations do not include
this point. That is the reason why our own evaluation of them is included, as well as the ground truth data
provided by the TRECVID team.

The approaches tested in the submitted runs are:

• H_Q4: Differences of color histograms, quantified to 4 classes or bins.

• H_Q8: Differences of color histograms, quantified to 8 classes or bins.

• H_Q16: Differences of color histograms, quantified to 16 classes or bins.

• H_Q32: Differences of color histograms, quantified to 32 classes or bins.

• H_Q64: Differences of color histograms, quantified to 64 classes or bins.

• H_QM8: Differences of color histograms, quantified to 8 classes or bins, with redistribution of boundary
values.

• H_QM16: Differences of color histograms, quantified to 16 classes or bins, with redistribution of boundary
values.

• H_QM32: Differences of color histograms, quantified to 32 classes or bins, with redistribution of boundary
values.

• H_QM64: Differences of color histograms, quantified to 64 classes or bins, with redistribution of boundary
values.

• HMR_QM64: Differences of multiresolution color histograms, quantified to 64 classes or bins, with redis-
tribution of boundary values.

All the tools involved in the developed software are free distribution tools, like vs. 2.4.18-14 Linux operating
system, vs. 3.2.7 of the GCC GNU compiler [15], vs. 0.4.0 of the MPEG-2 video stream decoder LIBMPEG-2
[16] and vs. 2.4.23 of the LIBXML2 library for processing XML files [17].

4.2 Results analysis

Table 1 shows the recall and precision values, as returned by the TRECVID 2004 team, for the cut detection
task. The suffix notation used in the method column in the tables is the following: MI —mean intensity—, H
—histogram—, Q —quantified—, MR —multiresolution—, E —equally redistributed— and number —number
of classes—.

Table 1 shows how the quantification (labels H_Q4 to H_Q64) improves the precision values while produces
lower values of recall. It can also be seen that the use of the equal redistribution (labels H_QM8 to H_QM64



Método Recall Precision

MI 0.873 0.248
H 0.516 0.781
H_Q4 0.932 0.672
H_Q8 0.931 0.734
H_Q16 0.922 0.773
H_Q32 0.901 0.801
H_Q64 0.843 0.810
H_QM4 0.924 0.558
H_QM8 0.925 0.687
H_QM16 0.920 0.738
H_QM32 0.919 0.762
H_QM64 0.912 0.775
HMR 0.002 0.073
HMR_Q4 0.915 0.374
HMR_Q8 0.903 0.490
HMR_Q16 0.871 0.688
HMR_Q32 0.766 0.775
HMR_Q64 0.431 0.760
HMR_QM4 0.902 0.289
HMR_QM8 0.907 0.442
HMR_QM16 0.883 0.652
HMR_QM32 0.874 0.726
HMR_QM64 0.811 0.778

Table 2: Own evaluation of TRECVID 2004 data.

Method Total decode time Total segmentation time

H_Q4 5492.36 430.26
H_Q8 5496.47 430.2
H_Q16 5470.96 431.58
H_Q32 5484.86 431.02
H_Q64 5584.95 435.2
H_QM8 5477.48 434.81
H_QM16 5481.69 435.37
H_QM32 5583.42 435.38
H_QM64 5500.85 443.49
HMR_QM64 5511.29 2912.84

Table 3: Processing complexity.

in the table) keeps both the recall and precision in high values. Finally, a last run was submitted to test both
techniques applied to the multiresolution histograms (label HMR_QM64 in the table).

To acomplish a proper evaluation of the experiments not submitted to the TRECVID and to finish all the
study, it must be noticed that the TRECVID evaluation assumes short graduals as cuts. On one hand, our own
evaluation methods do not consider this matter. On the other hand the techniques herein analyzed have not
been developed to give a suitable answer to that question. For that reason, Table 2 shows the results achieved
by all the methods, repeating in our own evaluation those also shown in Table 1.

Excluding the short graduals of the evaluation causes an increase of the recall, since these techniques do
not recognize them as a cut, and a decrease of the precision, due to the fact that the TRECVID evaluation
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Figure 3: Recall–precision graphs of our own evaluation.



classifies them as a hit instead as a false positive. Appart from that, the same tendency shown in Table 1 can
be observed in Table 2. The implementation of the original techniques of Zhang’s algorithm have also been
tested, with poor precision results in the case of mean intensity (label MI) and a low value of recall in the case
of histograms (label H). It can also be seen that the quantification and the redistribution of the values really
improve the results achieved by the multiresolution histograms (label HMR).

Decoding and segmentation time has been obtained on a 3GHz Pentium 4 processor. Table 3 shows data
about the processing complexity of the runs submitted to the TRECVID. The decode time includes a rescaling
stage for every frame. It has not been included into the segmentation time because it has been implemented
using a general algorithm based on bicubic interpolation whithout considering any optimization in terms of
performance.

Figure 3 shows the combination of recall and precision values for our own evaluation of the runs shown on
Table 2. The figures show the high stability of the methods, since it can be seen that all the values are grouped
around the mean values.

Tables 1 and 2 and Figure 3 confirm that the lower the number of classes is, the higher the recall is, but
with a loss of precision. The techniques implemented keep both precision and recall in high values.

5 Conclusions and ongoing work

In this paper some automatic shot detection techniques based on color histograms and multiresolution
histograms are presented. The quantification an equally redistribution techniques applied to color multiresolu-
tion histograms have been also used on color histograms to test their behaviour achieving interesting results in
both cases. The results have shown that these techniques improve the behaviour of both color histograms and
multiresolution histograms, although it has to be done more work to obtain better results.

Alternative approaches like the application of different filters, will probably provide smoother difference
graphs than those shown on Figure 2 and will increase the disrimination of peaks corresponding to cuts. The
use of local multiresolution histograms [11] will also help to build a more powerful tool to detect cuts, and
perhaps some graduals. Appart from that, a combination of the primitives may improve the precision and recall
measures.

More work will be focused on a more efficient implementation of the threshold Th update. Alternatives to
variance computation will be studied.
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